One-time tables are a class of two-party correlations that can help achieve information-theoretically secure two-party (interactive) classical or quantum computation. In this work we propose a bipartite quantum protocol for generating a simple type of one-time tables (the correlation in the Popescu-Rohrlich nonlocal box) with partial security. We then show that by running many instances of the first protocol and performing checks on some of them, asymptotically information-theoretically secure generation of one-time tables can be achieved. The first protocol is adapted from a protocol for semi-honest quantum oblivious transfer, with some changes so that no entangled state needs to be prepared, and the communication involves only one qutrit in each direction. We show that some information tradeoffs in the first protocol are similar to that in the semi-honest oblivious transfer protocol. We also obtain two types of inequalities about guessing probabilities in some protocols for generating one-time tables, from a single type of inequality about guessing probabilities in semi-honest quantum oblivious transfer protocols.
翻译:一次性表格是一类双方相关关系,可以帮助实现信息理论安全的双方(互动的)古典或量子计算。 在这项工作中,我们提出一个双方量子协议,用于产生一种带有部分安全的简单类型的一次性表格(波佩斯库-罗赫利克非本地框中的关联),我们然后表明,通过运行第一个协议的许多实例和对其中某些内容进行检查,可以实现信息理论安全的一次性表格生成。第一个协议是从半成品量子(互动的)隐性转移协议中修改的,有些变化使得不需要准备纠缠状态,而通信在每个方向都只涉及一个问题。我们表明,第一个协议中的一些信息权衡与半成品隐性转移协议中的信息权衡类似。我们还从一些协议中猜测产生一次性表格的概率上获得了两种不平等,一种是假设半成品子不可分的半成品转移协议中的概率。