In this paper we present a Local Fourier Analysis of a space-time multigrid solver for a hyperbolic test problem. The space-time discretization is based on arbitrarily high order discontinuous Galerkin spectral element methods in time and a first order finite volume method in space. We apply a block Jacobi smoother and consider coarsening in space-time, as well as temporal coarsening only. Asymptotic convergence factors for the smoother and the two-grid method for both coarsening strategies are presented. For high CFL numbers, the convergence factors for both strategies are $0.5$ for first order, and $0.375$ for second order accurate temporal approximations. Numerical experiments in one and two spatial dimensions for space-time DG-SEM discretizations of varying order gives even better convergence rates of around $0.3$ and $0.25$ for sufficiently high CFL numbers.
翻译:在本文中,我们展示了对超曲线测试问题的时空多格求解器的局部四重线分析。 时空分解基于时空任意高顺序不连续的Galerkin光谱元件法和空间第一级有限体积法。 我们使用一个块的雅各比平滑,考虑时空粗化,以及仅考虑时空粗化。 提出了平滑和两种粗略战略的双格方法的惯性趋同因素。 对于高CFL数字,两种战略的趋同系数分别为第一级0.5美元和第二级准确时间近似值0.375美元。 不同顺序的时空DG- SEM离散化的一两个空间层面的数值实验使得时间DG- Sm离异化的高度数字更接近0.3美元和0.25美元的趋同率。