In this paper, we propose new geometrically unfitted space-time Finite Element methods for partial differential equations posed on moving domains of higher order accuracy in space and time. As a model problem, the convection-diffusion problem on a moving domain is studied. For geometrically higher order accuracy, we apply a parametric mapping on a background space-time tensor-product mesh. Concerning discretisation in time, we consider discontinuous Galerkin, as well as related continuous (Petrov-)Galerkin and Galerkin collocation methods. For stabilisation with respect to bad cut configurations and as an extension mechanism that is required for the latter two schemes, a ghost penalty stabilisation is employed. The article puts an emphasis on the techniques that allow to achieve a robust but higher order geometry handling for smooth domains. We investigate the computational properties of the respective methods in a series of numerical experiments. These include studies in different dimensions for different polynomial degrees in space and time, validating the higher order accuracy in both variables.
翻译:在本文中,我们为移动空间和时间上更符合顺序准确度的领域时的局部偏差方程式提出了新的不适宜地格时间有限元素方法。 作为一个模型问题,正在研究移动域的对流-扩散问题。对于几何更高顺序的精确度,我们将对背景空间-时间、高压产品网格进行参数绘图。关于时间的离散,我们考虑不连续的加勒金,以及相关的连续(Petrov-)Galerkin和Galerkin合用法。在对坏切配置进行稳定化和作为后两种方案所需的扩展机制时,将采用幽灵惩罚稳定化。文章强调在平滑域实现稳健但更高顺序的几何处理的技术。我们在一系列数字实验中调查了各自方法的计算属性。其中包括对空间和时间不同多角度不同程度的不同层面的研究,验证了两种变量的更高顺序精确度。