In this paper, both semidiscrete and fully discrete finite element methods are analyzed for the penalized two-dimensional unsteady Navier-Stokes equations with nonsmooth initial data. First order backward Euler method is applied for the time discretization, whereas conforming finite element method is used for the spatial discretization. Optimal $L^2$ error estimates for the semidiscrete as well as the fully discrete approximations of the velocity and of the pressure are derived for realistically assumed conditions on the data. The main ingredient in the proof is the appropriate exploitation of the inverse of the penalized Stokes operator, negative norm estimates and time weighted estimates. Numerical examples are discussed at the end which conform our theoretical results.
翻译:在本文中,对半分异和完全离散的有限元素方法都进行分析,以分析受罚的二维非稳定纳维埃-斯托克斯方程式,并附有非悬浮初始数据。在时间分解时,采用第一级向后欧勒法,而在空间分解时则采用符合的有限元素法。在数据实际假设的条件下,对半分异物以及速度和压力的完全离散近似值进行最佳的误差估计。证据中的主要成分是适当利用受罚的斯托克斯操作员的反面、负标准估计和时间加权估计。结尾处讨论了符合我们理论结果的数值实例。