Network embedding aims to learn low-dimensional representations of nodes in a network, while the network structure and inherent properties are preserved. It has attracted tremendous attention recently due to significant progress in downstream network learning tasks, such as node classification, link prediction, and visualization. However, most existing network embedding methods suffer from the expensive computations due to the large volume of networks. In this paper, we propose a $10\times \sim 100\times$ faster network embedding method, called Progle, by elegantly utilizing the sparsity property of online networks and spectral analysis. In Progle, we first construct a \textit{sparse} proximity matrix and train the network embedding efficiently via sparse matrix decomposition. Then we introduce a network propagation pattern via spectral analysis to incorporate local and global structure information into the embedding. Besides, this model can be generalized to integrate network information into other insufficiently trained embeddings at speed. Benefiting from sparse spectral network embedding, our experiment on four different datasets shows that Progle outperforms or is comparable to state-of-the-art unsupervised comparison approaches---DeepWalk, LINE, node2vec, GraRep, and HOPE, regarding accuracy, while is $10\times$ faster than the fastest word2vec-based method. Finally, we validate the scalability of Progle both in real large-scale networks and multiple scales of synthetic networks.
翻译:嵌入网络的目的是在网络中学习节点的低维表现,而网络结构和固有特性则得到保存。最近,由于下游网络学习任务(例如节点分类、链接预测和可视化等)的重大进展,它引起了巨大的关注。然而,由于网络数量庞大,大多数现有的网络嵌入方法都因昂贵的计算而受到影响。在本文中,我们建议采用10美元的时间=sim 100 乘以更快的网络嵌入方法,称为Progle,方法是优雅地利用在线网络和光谱分析的宽度属性。在Progle中,我们首先建立一个\ textit{spar}近距离矩阵,并通过分散的矩阵分解定位来高效地嵌入网络。然后,我们通过光谱分析引入网络传播模式,将当地和全球结构信息纳入嵌入嵌入。此外,这一模型可以普遍化,将网络信息纳入其他未经充分培训的快速嵌入系统。从分散的光谱网络嵌入中受益,我们在四个不同的数据集上的实验表明, Progle eforforform orm orm ormal ormal orm ormal ormal ormal orm orm orm orm orm orm orm orm orlizal orlizlizlizal lax lax lax lax lax laticility lability labilizal- labiltic, la labilizlity laticilizlational lax lax le lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax labild lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax la