Machine learning models can leak information about the data used to train them. To mitigate this issue, Differentially Private (DP) variants of optimization algorithms like Stochastic Gradient Descent (DP-SGD) have been designed to trade-off utility for privacy in Empirical Risk Minimization (ERM) problems. In this paper, we propose Differentially Private proximal Coordinate Descent (DP-CD), a new method to solve composite DP-ERM problems. We derive utility guarantees through a novel theoretical analysis of inexact coordinate descent. Our results show that, thanks to larger step sizes, DP-CD can exploit imbalance in gradient coordinates to outperform DP-SGD. We also prove new lower bounds for composite DP-ERM under coordinate-wise regularity assumptions, that are nearly matched by DP-CD. For practical implementations, we propose to clip gradients using coordinate-wise thresholds that emerge from our theory, avoiding costly hyperparameter tuning. Experiments on real and synthetic data support our results, and show that DP-CD compares favorably with DP-SGD.


翻译:机器学习模型可以泄露用于培训这些数据的信息。 为了缓解这一问题, 设计了像Stochatic Gladientle Ground(DP-SGD)这样的有差异的私人优化算法变式(DP- DP), 以便在经验风险最小化(ERM)问题中交换隐私。 在本文中, 我们提议了一种有差异的私人最佳协调算式(DP-CD), 这是一种解决综合DP- ERM问题的新方法。 我们通过对不精确的下降进行新的理论分析来获得效用保障。 我们的结果显示, 由于较大的步子大小, DP- CD可以利用梯度坐标的不平衡来超过 DP-SGD 。 我们还证明, 在协调的常规假设下, 综合的 DP- ERM 也具有新的更低的界限, 这几乎与 DP-CD- CD 相匹配。 关于实际执行, 我们提议使用从我们的理论中得出的协调性阈值来剪裁, 避免昂贵的超分度调。 实验真实和合成数据支持我们的结果, 并且显示DP-CD CD 与DP- DP- SGD 相匹配。

0
下载
关闭预览

相关内容

坐标下降法(coordinate descent)是一种非梯度优化算法。算法在每次迭代中,在当前点处沿一个坐标方向进行一维搜索以求得一个函数的局部极小值。在整个过程中循环使用不同的坐标方向。对于不可拆分的函数而言,算法可能无法在较小的迭代步数中求得最优解。为了加速收敛,可以采用一个适当的坐标系,例如通过主成分分析获得一个坐标间尽可能不相互关联的新坐标系.
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
19+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
19+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员