Machine learning models can leak information about the data used to train them. To mitigate this issue, Differentially Private (DP) variants of optimization algorithms like Stochastic Gradient Descent (DP-SGD) have been designed to trade-off utility for privacy in Empirical Risk Minimization (ERM) problems. In this paper, we propose Differentially Private proximal Coordinate Descent (DP-CD), a new method to solve composite DP-ERM problems. We derive utility guarantees through a novel theoretical analysis of inexact coordinate descent. Our results show that, thanks to larger step sizes, DP-CD can exploit imbalance in gradient coordinates to outperform DP-SGD. We also prove new lower bounds for composite DP-ERM under coordinate-wise regularity assumptions, that are nearly matched by DP-CD. For practical implementations, we propose to clip gradients using coordinate-wise thresholds that emerge from our theory, avoiding costly hyperparameter tuning. Experiments on real and synthetic data support our results, and show that DP-CD compares favorably with DP-SGD.
翻译:机器学习模型可以泄露用于培训这些数据的信息。 为了缓解这一问题, 设计了像Stochatic Gladientle Ground(DP-SGD)这样的有差异的私人优化算法变式(DP- DP), 以便在经验风险最小化(ERM)问题中交换隐私。 在本文中, 我们提议了一种有差异的私人最佳协调算式(DP-CD), 这是一种解决综合DP- ERM问题的新方法。 我们通过对不精确的下降进行新的理论分析来获得效用保障。 我们的结果显示, 由于较大的步子大小, DP- CD可以利用梯度坐标的不平衡来超过 DP-SGD 。 我们还证明, 在协调的常规假设下, 综合的 DP- ERM 也具有新的更低的界限, 这几乎与 DP-CD- CD 相匹配。 关于实际执行, 我们提议使用从我们的理论中得出的协调性阈值来剪裁, 避免昂贵的超分度调。 实验真实和合成数据支持我们的结果, 并且显示DP-CD CD 与DP- DP- SGD 相匹配。