The latest video coding standard, Versatile Video Coding (VVC), achieves almost twice coding efficiency compared to its predecessor, the High Efficiency Video Coding (HEVC). However, achieving this efficiency (for intra coding) requires 31x computational complexity compared to HEVC, making it challenging for low power and real-time applications. This paper, proposes a novel machine learning approach that jointly and separately employs two modalities of features, to simplify the intra coding decision. First a set of features are extracted that use the existing DCT core of VVC, to assess the texture characteristics, and forms the first modality of data. This produces high quality features with almost no overhead. The distribution of intra modes at the neighboring blocks is also used to form the second modality of data, which provides statistical information about the frame. Second, a two-step feature reduction method is designed that reduces the size of feature set, such that a lightweight model with a limited number of parameters can be used to learn the intra mode decision task. Third, three separate training strategies are proposed (1) an offline training strategy using the first (single) modality of data, (2) an online training strategy that uses the second (single) modality, and (3) a mixed online-offline strategy that uses bimodal learning. Finally, a low-complexity encoding algorithms is proposed based on the proposed learning strategies. Extensive experimental results show that the proposed methods can reduce up to 24% of encoding time, with a negligible loss of coding efficiency. Moreover, it is demonstrated how a bimodal learning strategy can boost the performance of learning. Lastly, the proposed method has a very low computational overhead (0.2%), and uses existing components of a VVC encoder, which makes it much more practical compared to competing solutions.


翻译:最新的视频编码标准 Versatile Video Coarding (VVC), 与其前身 高效率视频编码 (HEVC) 相比, 实现了近两倍的编码效率。 然而, 实现这一效率( 内部编码) 需要31x计算复杂度, 与 HEVC 相比, 使得它对于低功率和实时应用程序具有挑战性。 本文提出一种新的机器学习方法, 联合和分别使用两种功能模式, 以简化内部编码决定。 首先, 抽取一套功能, 使用 VVVC 现有的 DCT 核心, 来评估文本特性, 并形成第一个数据模式 。 这产生高质量的升级战略 。 相邻区内部模式的分布也用来形成第二个数据模式, 提供有关框架的统计信息。 其次, 两步设置的功能缩减方法, 从而可以使用一个较轻的重量模型, 且参数有限, 可以用来学习内部模式决定任务。 第三, 三个不同的培训战略是(1) 使用第二个离线培训战略, 使用第一个( singlevelylevelyal) rual real comlistrual comliver comliver comliver 战略,, 一种基于 rodustrual rodudustrual roduding roduding roduding rodustrual commodal roducede

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
83+阅读 · 2022年3月19日
【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
75+阅读 · 2021年1月10日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
83+阅读 · 2022年3月19日
【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
75+阅读 · 2021年1月10日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员