Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications such as augmented reality, multiplayer gaming, and industrial automation. While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast cloud network flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing cloud network control techniques.
翻译:新的分布式云层结构,如雾和移动边缘计算,在有效提供实时流处理应用程序,如增强现实、多玩者游戏和工业自动化方面发挥着越来越重要的作用。虽然这些应用要求多个用户/装置共享和同时消费经加工流流,但现有技术缺乏处理其固有的多播性质、导致不必要的交通冗余和网络拥堵的有效机制。在本文件中,我们为分布式云网络控制建立一个统一框架,并采用通用(混合播送)流量,以便优化所需包处理、转发和复制操作的分布式实施。我们首先在新的控制框架内(就其单向对应方而言)对扩大的多播网络稳定区域进行定性。我们随后设计了一个新的排队系统,以便根据目前的目的地组合安排数据集,将数据包排成日程,并利用Lyapunov的流式加点理论来开发首次完全分散的多播送云网络流量控制(混合播送)计算法。数字实验验证了分析结果,并展示了拟议的设计对现有云层网络控制技术的性能。