Generative Pre-Training (GPT) models like ChatGPT have demonstrated exceptional performance in various Natural Language Processing (NLP) tasks. Although ChatGPT has been integrated into the overall workflow to boost efficiency in many domains, the lack of flexibility in the finetuning process hinders its applications in areas that demand extensive domain expertise and semantic knowledge, such as healthcare. In this paper, we evaluate ChatGPT on the China National Medical Licensing Examination (CNMLE) and propose a novel approach to improve ChatGPT from two perspectives: integrating medical domain knowledge and enabling few-shot learning. By using a simple but effective retrieval method, medical background knowledge is extracted as semantic instructions to guide the inference of ChatGPT. Similarly, relevant medical questions are identified and fed as demonstrations to ChatGPT. Experimental results show that directly applying ChatGPT fails to qualify the CNMLE at a score of 51 (i.e., only 51\% of questions are answered correctly). While our knowledge-enhanced model achieves a high score of 70 on CNMLE-2022 which not only passes the qualification but also surpasses the average score of humans (61). This research demonstrates the potential of knowledge-enhanced ChatGPT to serve as versatile medical assistants, capable of analyzing real-world medical problems in a more accessible, user-friendly, and adaptable manner.
翻译:暂无翻译