Symbolization methods in large language models (LLMs) have been shown effective to improve LLMs' reasoning ability. However, most of these approaches hinge on mapping natural languages to formal languages (e.g., Python, SQL) that are more syntactically complete and free of ambiguity. Although effective, they depart from the natural language itself and deviate from the habits of human thinking, and instead cater more to the execution mindset of computers. In contrast, we hope to simplify natural language by starting from the concept of symbols in linguistics itself, so that LLMs can learn the common formulation and general solution of reasoning problems wrapped in different natural semantics. From this consideration, we propose \textbf{Meta-Reasoning}, which allows LLMs to automatically accomplish semantic-symbol deconstruction, i.e., semantic resolution, to maximally reduce different questions of certain reasoning tasks to similar natural language representation, thus gaining the ability to learn by analogy and facilitating data-efficient in-context learning. Our experiments show that the Meta-Reasoning paradigm saliently enhances LLMs' reasoning performance with fewer demonstrations. They can learn not only reasoning chains but also general solutions to certain types of tasks. In particular, for symbolic reasoning tasks, such as 7-step Tracking Shuffled Objects, GPT-3 (text-davinci-002) achieves over 99% accuracy with only one Meta-Reasoning demonstration, outperforming all current LLMs with the standard chain-of-thought prompting.
翻译:暂无翻译