We develop a kernel projected Wasserstein distance for the two-sample test, an essential building block in statistics and machine learning: given two sets of samples, to determine whether they are from the same distribution. This method operates by finding the nonlinear mapping in the data space which maximizes the distance between projected distributions. In contrast to existing works about projected Wasserstein distance, the proposed method circumvents the curse of dimensionality more efficiently. We present practical algorithms for computing this distance function together with the non-asymptotic uncertainty quantification of empirical estimates. Numerical examples validate our theoretical results and demonstrate good performance of the proposed method.


翻译:我们开发出一个预测瓦森斯坦距离的内核,用于两样抽样测试,这是统计和机器学习的基本基石:给两套样本,以确定它们是否来自同一分布。这个方法的运作方法是在数据空间中找到非线性绘图,使预测分布之间的距离最大化。与目前关于预测瓦森斯坦距离的工程相比,拟议方法可以更有效地绕过维度的诅咒。我们提出了计算这一距离函数的实用算法,同时对经验性估计进行非不痛苦的不确定性量化。数字实例证实了我们的理论结果,并展示了拟议方法的良好表现。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年7月27日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
Top
微信扫码咨询专知VIP会员