In this paper, we consider the time-inhomogeneous nonlinear time series regression for a general class of locally stationary time series. On one hand, we propose sieve nonparametric estimators for the time-varying regression functions which can achieve the min-max optimal rate. On the other hand, we develop a unified simultaneous inferential theory which can be used to conduct both structural and exact form testings on the functions. Our proposed statistics are powerful even under locally weak alternatives. We also propose a multiplier bootstrapping procedure for practical implementation. Our methodology and theory do not require any structural assumptions on the regression functions and we also allow the functions to be supported in an unbounded domain. We also establish sieve approximation theory for 2-D functions in unbounded domain and a Gaussian approximation result for affine and quadratic forms for high dimensional locally stationary time series, which can be of independent interest. Numerical simulations and a real financial data analysis are provided to support our results.
翻译:在本文中,我们考虑对局部固定时间序列的普通类别进行时间异同的非线性时间序列回归。 一方面, 我们提议对时间变化回归函数进行筛选非参数估计, 以达到最小最大最佳率。 另一方面, 我们开发一个统一的同步推断理论, 可用于对函数进行结构和精确形式的测试。 我们提议的统计即使在地方薄弱的替代方法下也是强大的。 我们还提议了一个倍数制导程序, 以供实际实施。 我们的方法和理论并不要求对回归函数作任何结构性假设, 我们还允许在无约束域内支持这些函数。 我们还为无界域的二维函数建立筛选近似理论, 并为高维的本地固定时间序列建立直径和二次近似结果, 这可能具有独立的兴趣。 提供了数值模拟和真实的财务数据分析, 以支持我们的结果 。