This work presents a new methodology to obtain probabilistic interval predictions of a dynamical system. The proposed strategy uses stored past system measurements to estimate the future evolution of the system. The method relies on the use of dissimilarity functions to estimate the conditional probability density function of the outputs. A family of empirical probability density functions, parameterized by means of two scalars, is introduced. It is shown that the proposed family encompasses the multivariable normal probability density function as a particular case. We show that the presented approach constitutes a generalization of classical estimation methods. A validation scheme is used to tune the two parameters on which the methodology relies. In order to prove the effectiveness of the presented methodology, some numerical examples and comparisons are provided.
翻译:这项工作提出了一种新方法,以获得对动态系统的概率间隔预测。拟议战略使用存储的过去系统测量方法来估计系统的未来演变情况。该方法依靠使用不同功能来估计产出的有条件概率密度功能。引入了一个经验概率密度函数的组合,以两个弧度为参数,显示拟议组合将多变正常概率密度函数作为一个特定案例包含在内。我们显示,所提出的方法构成了典型估算方法的概括性。使用一个验证办法来调整该方法所依据的两个参数。为了证明所提出的方法的有效性,提供了一些数字例子和比较。