We introduce a new algorithm, Regression based Supervised Learning (RSL), for learning per instance Neural Network (NN) defined heuristic functions for classical planning problems. RSL uses regression to select relevant sets of states at a range of different distances from the goal. RSL then formulates a Supervised Learning problem to obtain the parameters that define the NN heuristic, using the selected states labeled with exact or estimated distances to goal states. Our experimental study shows that RSL outperforms, in terms of coverage, previous classical planning NN heuristics functions while requiring two orders of magnitude less training time.
翻译:我们引入了一种新的算法,即基于回归的受监督学习(RSL),用于每个实例的学习。 神经网络(NN)界定了古典规划问题的螺旋函数。RSL使用回归法选择离目标不同距离的相关州组。RSL随后提出受监督学习问题,以获得界定NN的参数,使用被标注为准确或估计距离的目标国的选定州。我们的实验研究表明,RSL在覆盖范围上超越了以前的古典规划NNN的文艺功能,而同时需要两个数量级的较少的培训时间。