This paper describes a new approach for learning structures of large Bayesian networks based on blocks resulting from feature space clustering. This clustering is obtained using normalized mutual information. And the subsequent aggregation of blocks is done using classical learning methods except that they are input with compressed information about combinations of feature values for each block. Validation of this approach is done for Hill-Climbing as a graph enumeration algorithm for two score functions: BIC and MI. In this way, potentially parallelizable block learning can be implemented even for those score functions that are considered unsuitable for parallelizable learning. The advantage of the approach is evaluated in terms of speed of work as well as the accuracy of the found structures.
翻译:本文介绍了一种基于地物空间群集产生的区块的大型巴耶斯网络学习结构的新方法。 这种群集是使用标准化的相互信息获得的。 其后的区块汇总是使用经典的学习方法完成的, 只不过它们都是以关于每个区块地物价值组合的压缩信息输入的。 对这一方法的验证是为了将希尔- Climbbing作为两个得分函数( BIC 和 MI)的图表查点算法。 这样,即使是那些被认为不适于平行学习的得分函数, 也可以实施可能平行的区块学习。 这种方法的优点是从工作速度和所发现结构的准确性的角度进行评估。