Local Differential Privacy (LDP) is now widely adopted in large-scale systems to collect and analyze sensitive data while preserving users' privacy. However, almost all LDP protocols rely on a semi-trust model where users are curious-but-honest, which rarely holds in real-world scenarios. Recent works show poor estimation accuracy of many LDP protocols under malicious threat models. Although a few works have proposed some countermeasures to address these attacks, they all require prior knowledge of either the attacking pattern or the poison value distribution, which is impractical as they can be easily evaded by the attackers. In this paper, we adopt a general opportunistic-and-colluding threat model and propose a multi-group Differential Aggregation Protocol (DAP) to improve the accuracy of mean estimation under LDP. Different from all existing works that detect poison values on individual basis, DAP mitigates the overall impact of poison values on the estimated mean. It relies on a new probing mechanism EMF (i.e., Expectation-Maximization Filter) to estimate features of the attackers. In addition to EMF, DAP also consists of two EMF post-processing procedures (EMF* and CEMF*), and a group-wise mean aggregation scheme to optimize the final estimated mean to achieve the smallest variance. Extensive experimental results on both synthetic and real-world datasets demonstrate the superior performance of DAP over state-of-the-art solutions.


翻译:当地差异隐私(LDP)目前被广泛采用,用于大规模系统收集和分析敏感数据,同时保护用户的隐私;然而,几乎所有LDP协议都依赖半信任模式,即用户是好奇但诚实的,在现实世界情景中很少存在这种模式;最近的工作显示,恶意威胁模式下许多LDP协议的估计准确性差,虽然有少数工作提议了一些应对这些袭击的对策,但它们都需要事先了解攻击模式或毒值分布,这是不切实际的,因为攻击者可以轻易回避。我们本文件采用了一般的机会与平衡威胁模式,并提出了多组差异聚合议定书,以提高LDP下平均估算的准确性。不同于所有现有在个人基础上检测毒值的工程,DAP减轻了毒值对估计平均值的总体影响。它们都依靠一个新的预测机制EMF(即预期-氧化过滤器)来估计攻击者的特点。除了EMF、DAP-AP-AF-S-S-Simal-Supal-Supal-Supal-Simal-Acal-Appyal Processal-MLOal-S-Ial Procalalal Proportalalalal Procal Procalal 和CF-Appal-Appalal-Appal 和CEMMDalalalalalalalalalalalalalalalalalalal Procal Procalmentalmental 和M) 方案外,还展示两种方法外,还展示了两种最优性结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月7日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员