We conduct a thorough study of different forms of horizontally explicit and vertically implicit (HEVI) time-integration strategies for the compressible Euler equations on spherical domains typical of nonhydrostatic global atmospheric applications. We compare the computational time and complexity of two nonlinear variants (NHEVI-GMRES and NHEVI-LU) and a linear variant (LHEVI). We report on the performance of these three variants for a number of additive Runge-Kutta Methods ranging in order of accuracy from second through fifth, and confirm the expected order of accuracy of the HEVI methods for each time-integrator. To gauge the maximum usable time-step of each HEVI method, we run simulations of a nonhydrostatic baroclinic instability for 100 days and then use this time-step to compare the time-to-solution of each method. The results show that NHEVI-LU is 2x faster than NHEVI-GMRES, and LHEVI is 5x faster than NHEVI-LU, for the idealized cases tested. The baroclinic instability and inertia-gravity wave simulations indicate that the optimal choice of time-integrator is LHEVI with either second or third order schemes, as both schemes yield similar time to solution and relative L2 error at their maximum usable time-steps. In the future, we will report on whether these results hold for more complex problems using, e.g., real atmospheric data and/or a higher model top typical of space weather applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员