We propose a data-driven approach for propagating uncertainty in stochastic power grid simulations and apply it to the estimation of transmission line failure probabilities. A reduced-order equation governing the evolution of the observed line energy probability density function is derived from the Fokker--Planck equation of the full-order continuous Markov process. Our method consists of estimates produced by numerically integrating this reduced equation. Numerical experiments for scalar- and vector-valued energy functions are conducted using the classical multimachine model under spatiotemporally correlated noise perturbation. The method demonstrates a more sample-efficient approach for computing probabilities of tail events when compared with kernel density estimation. Moreover, it produces vastly more accurate estimates of joint event occurrence when compared with independent models.
翻译:暂无翻译