The Laplace-Beltrami problem on closed surfaces embedded in three dimensions arises in many areas of physics, including molecular dynamics (surface diffusion), electromagnetics (harmonic vector fields), and fluid dynamics (vesicle deformation). In particular, the Hodge decomposition of vector fields tangent to a surface can be computed by solving a sequence of Laplace-Beltrami problems. Such decompositions are very important in magnetostatic calculations and in various plasma and fluid flow problems. In this work we develop $L^2$-invertibility theory for the Laplace-Beltrami operator on piecewise smooth surfaces, extending earlier weak formulations and integral equation approaches on smooth surfaces. Furthermore, we reformulate the weak form of the problem as an interface problem with continuity conditions across edges of adjacent piecewise smooth panels of the surface. We then provide high-order numerical examples along surfaces of revolution to support our analysis, and discuss numerical extensions to general surfaces embedded in three dimensions.
翻译:嵌入三个维度的封闭表面的Laplace-Beltrami问题在许多物理领域产生,包括分子动态(地表扩散)、电磁(合力矢量场)和流体动态(浮体变形),特别是,通过解决Laplace-Beltrami问题序列,可以计算出矢量场正切向表面的Hodge分解问题。这种分解在磁层计算以及各种等离子体和流体流问题中非常重要。在这项工作中,我们为 Laplace-Beltrami 操作员在平滑的表面开发了$L2$的不可逆性理论,在平滑的表面扩展了早期的微弱配方和整体方方法。此外,我们重新配置了这个问题的微弱形式,将其作为一个与相邻的碎光滑面边缘的连续性条件的接口问题。我们随后在革命的表面提供高阶数字示例,以支持我们的分析,并讨论嵌入三个维度的普通表面的数字延伸。