Visual representations can be defined as the activations of neuronal populations in response to images. The activation of a neuron as a function over all image space has been described as a "tuning landscape". As a function over a high-dimensional space, what is the structure of this landscape? In this study, we characterize tuning landscapes through the lens of level sets and Morse theory. A recent study measured the in vivo two-dimensional tuning maps of neurons in different brain regions. Here, we developed a statistically reliable signature for these maps based on the change of topology in level sets. We found this topological signature changed progressively throughout the cortical hierarchy, with similar trends found for units in convolutional neural networks (CNNs). Further, we analyzed the geometry of level sets on the tuning landscapes of CNN units. We advanced the hypothesis that higher-order units can be locally regarded as isotropic radial basis functions, but not globally. This shows the power of level sets as a conceptual tool to understand neuronal activations over image space.
翻译:视觉表现可以被定义为根据图像对神经群的激活。 激活神经元作为所有图像空间的函数已被描述为“ 调整景观” 。 作为高维空间的函数, 景观的结构是什么? 在这次研究中, 我们用水平组和摩斯理论的透镜来描述调整景观。 最近的一项研究测量了不同大脑区域神经元体的体外二维调整图。 在这里, 我们根据层次组的地形变化为这些地图开发了一个统计上可靠的签名。 我们发现这种表层特征在整个皮层结构中逐渐发生变化, 并发现了同源神经网络单元的类似趋势 。 此外, 我们分析了CNN单元调整景观时的平面组的几何形状。 我们提出了一种假设, 即高阶单位可以被当地视为是异位辐射基础功能, 但不是全球范围。 这显示了水平组作为理解图像空间神经活化的概念工具的力量 。