Spherical harmonics provide a smooth, orthogonal, and symmetry-adapted basis to expand functions on a sphere, and they are used routinely in computer graphics, signal processing and different fields of science, from geology to quantum chemistry. More recently, spherical harmonics have become a key component of rotationally equivariant models for geometric deep learning, where they are used in combination with distance-dependent functions to describe the distribution of neighbors within local spherical environments within a point cloud. We present a fast and elegant algorithm for the evaluation of the real-valued spherical harmonics. Our construction integrates many of the desirable features of existing schemes and allows to compute Cartesian derivatives in a numerically stable and computationally efficient manner. We provide an efficient C implementation of the proposed algorithm, along with easy-to-use Python bindings.
翻译:球体口音提供了一个光滑、正方形和对称调整的基础,可以扩大球体上的功能,这些功能通常用于计算机图形、信号处理和从地质到量子化学等不同科学领域。最近,球体口音已成为几何深学习旋转等异模型的关键组成部分,与远距离的功能相结合,用来描述点云内当地球体环境中邻居的分布。我们为评估实际价值球体口音提供了一种快速和优雅的算法。我们的建筑综合了现有方案的许多可取特征,并允许以数字稳定和计算高效的方式计算Cartesian衍生物。我们提供了拟议的算法的高效C实施,以及易于使用的 Python 捆绑。