In the context of large samples, a small number of individuals might spoil basic statistical indicators like the mean. It is difficult to detect automatically these atypical individuals, and an alternative strategy is using robust approaches. This paper focuses on estimating the geometric median of a random variable, which is a robust indicator of central tendency. In order to deal with large samples of data arriving sequentially, online stochastic Newton algorithms for estimating the geometric median are introduced and we give their rates of convergence. Since estimates of the median and those of the Hessian matrix can be recursively updated, we also determine confidences intervals of the median in any designated direction and perform online statistical tests.


翻译:在大样本情况下,少数个体可能会破坏基本的统计指标,如均值。自动检测这些异态个体是困难的,另一个策略是使用鲁棒性方法。本文专注于估计随机变量的几何中位数,这是一个鲁棒的中心趋势指标。为了处理顺序到达的大数据样本,我们引入了用于估算几何中位数的在线随机牛顿算法,并给出了它们的收敛速率。由于中位数的估计值和海森矩阵的估计值可以进行递归更新,因此我们还确定了中位数在任何指定方向上的置信区间并执行在线统计检验。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
105+阅读 · 2023年5月10日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
80+阅读 · 2022年4月3日
专知会员服务
45+阅读 · 2020年12月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
105+阅读 · 2023年5月10日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
80+阅读 · 2022年4月3日
专知会员服务
45+阅读 · 2020年12月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员