We study the problem of achieving decentralized coordination by a group of strategic decision makers choosing to engage or not in a task in a stochastic setting. First, we define a class of symmetric utility games that encompass a broad class of coordination games, including the popular framework known as \textit{global games}. With the goal of studying the extent to which agents engaging in a stochastic coordination game indeed coordinate, we propose a new probabilistic measure of coordination efficiency. Then, we provide an universal information theoretic upper bound on the coordination efficiency as a function of the amount of noise in the observation channels. Finally, we revisit a large class of global games, and we illustrate that their Nash equilibrium policies may be less coordination efficient then certainty equivalent policies, despite of them providing better expected utility. This counter-intuitive result, establishes the existence of a nontrivial trade-offs between coordination efficiency and expected utility in coordination games.


翻译:我们研究了在随机设置下,由一组决策者选择参与或不参与任务来实现去中心化协调的问题。首先,我们定义了一个对称效用博弈类,包括广泛的协调博弈,包括已知为全局博弈框架的一类。为了研究代理人参与随机协调博弈的程度,我们提出了一种新的概率化协调效率度量方法。然后,我们提供了一个通用的信息论上界来衡量协调效率,该上界是观察通道中噪声量的函数。最后,我们重新审视了一大类全局博弈,并说明了它们的纳什均衡策略在协调效率上可能不如等价策略,尽管它们提供了更好的预期效用。这一令人反感的结果确立了协调博弈中协调效率和预期效用之间存在着非平凡的权衡。

0
下载
关闭预览

相关内容

《多智能体任务规划》2022博士论文
专知会员服务
274+阅读 · 2022年11月20日
专知会员服务
17+阅读 · 2020年12月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
22+阅读 · 2011年12月31日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
22+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员