Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence. This task has achieved significant momentum in the computer vision community as it enables activity grounding beyond pre-defined activity classes by utilizing the semantic diversity of natural language descriptions. The semantic diversity is rooted in the principle of compositionality in linguistics, where novel semantics can be systematically described by combining known words in novel ways (compositional generalization). However, existing temporal grounding datasets are not carefully designed to evaluate the compositional generalizability. To systematically benchmark the compositional generalizability of temporal grounding models, we introduce a new Compositional Temporal Grounding task and construct two new dataset splits, i.e., Charades-CG and ActivityNet-CG. When evaluating the state-of-the-art methods on our new dataset splits, we empirically find that they fail to generalize to queries with novel combinations of seen words. We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization. Based on this insight, we propose a variational cross-graph reasoning framework that explicitly decomposes video and language into hierarchical semantic graphs, respectively, and learns fine-grained semantic correspondence between the two graphs. Furthermore, we introduce a novel adaptive structured semantics learning approach to derive the structure-informed and domain-generalizable graph representations, which facilitate the fine-grained semantic correspondence reasoning between the two graphs. Extensive experiments validate the superior compositional generalizability of our approach.


翻译:测地时空是将某个特定部分从一个未磨损的视频中定位到一个根据查询句子的任务。 这项工作在计算机视觉界中取得了巨大的动力, 因为它利用自然语言描述的语义多样性,使得活动能够超越预先定义的活动类别。 语义多样性植根于语言的构成性原则, 通过将已知的文字以新颖方式( 概括化) 来系统地描述新语义。 但是, 现有的时间地面数据集不是精心设计来评价组成性一般推理。 为了系统地衡量时间定位模型的构成性一般化, 我们引入一个新的构成性定地基结构任务, 并构建两个新的数据集分割, 即, 夏拉德- CG 和 ActionNet- CG 。 在评估我们新数据集结构分解的状态方法时, 我们从实验上发现它们无法以新语言的组合来概括性查询。 我们认为, 视频和语言内部结构化的语义结构化结构化是实现更高级对等化的关键因素。 基于这种剖析, 我们建议了两个结构化的变化的变化, 将结构结构化的变化的变化结构化结构化结构结构结构结构结构化的对等结构结构结构结构结构结构结构化的对等图,, 学习了我们学习了结构化的对等结构化的变化的图像结构结构化的对等结构化的对等的变, 。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
10+阅读 · 2021年2月26日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员