Knowledge graphs (KGs) have received increasing attention due to its wide applications on natural language processing. However, its use case on temporal question answering (QA) has not been well-explored. Most of existing methods are developed based on pre-trained language models, which might not be capable to learn \emph{temporal-specific} presentations of entities in terms of temporal KGQA task. To alleviate this problem, we propose a novel \textbf{T}ime-aware \textbf{M}ultiway \textbf{A}daptive (\textbf{TMA}) fusion network. Inspired by the step-by-step reasoning behavior of humans. For each given question, TMA first extracts the relevant concepts from the KG, and then feeds them into a multiway adaptive module to produce a \emph{temporal-specific} representation of the question. This representation can be incorporated with the pre-trained KG embedding to generate the final prediction. Empirical results verify that the proposed model achieves better performance than the state-of-the-art models in the benchmark dataset. Notably, the Hits@1 and Hits@10 results of TMA on the CronQuestions dataset's complex questions are absolutely improved by 24\% and 10\% compared to the best-performing baseline. Furthermore, we also show that TMA employing an adaptive fusion mechanism can provide interpretability by analyzing the proportion of information in question representations.
翻译:知识图( KGs) 因其在自然语言处理方面的广泛应用而日益受到越来越多的关注。 但是, 它在时间问题解答( QA) 中的使用案例并没有得到很好的探索。 大部分现有方法是根据预先培训的语言模型开发的, 这些模型可能无法从时间 KGQA 任务中学习实体的介绍 emph{ 时间性特质 。 为了缓解这一问题, 我们提议了一个新的\ textbf{ T} 注意\ textbf{M}ultiway kG 嵌入最终预测 KG 。 Emprical结果根据人类的逐步推理行为所启发。 对于每一个问题, TMA 首先从 KG 中提取相关概念, 然后将其输入一个多路适应模块, 产生问题 emph{ 时间性 特质性 。 这种表达方式可以被纳入预先培训的 KG 嵌入最终预测 。 Empricalcalal 将拟议模型实现的更好性 QIST- IMA 的精确性解释 10 数据, 也通过我们IMA 的精确性模型 的精确性模型 显示 10 的精确性数据 的精确性数据 显示 10 的精确性数据 。</s>