Generative adversarial networks (GANs) have demonstrated impressive image generation quality and semantic editing capability of real images, e.g., changing object classes, modifying attributes, or transferring styles. However, applying these GAN-based editing to a video independently for each frame inevitably results in temporal flickering artifacts. We present a simple yet effective method to facilitate temporally coherent video editing. Our core idea is to minimize the temporal photometric inconsistency by optimizing both the latent code and the pre-trained generator. We evaluate the quality of our editing on different domains and GAN inversion techniques and show favorable results against the baselines.
翻译:生成的对抗性网络(GANs)展示了令人印象深刻的图像生成质量和真实图像的语义编辑能力,例如改变对象类别、改变属性或转换样式等。然而,将这些基于GAN的编辑应用到每个框架的独立视频中,必然会产生时间性闪烁的工艺品。我们提出了一个简单而有效的方法来方便时间性一致的视频编辑。我们的核心想法是通过优化潜在代码和预先训练的生成器来尽量减少时间光度不一致。我们评估了我们在不同领域和GAN的转换技术上的编辑质量,并展示了相对于基线的有利结果。