Contact-implicit trajectory optimization offers an appealing method of automatically generating complex and contact-rich behaviors for robot manipulation and locomotion. The scalability of such techniques has been limited, however, by the challenge of ensuring both numerical reliability and physical realism. In this paper, we present preliminary results suggesting that the Iterative Linear Quadratic Regulator (iLQR) algorithm together with the recently proposed pressure-field-based hydroelastic contact model enables reliable and physically realistic trajectory optimization through contact. We use this approach to synthesize contact-rich behaviors like quadruped locomotion and whole-arm manipulation. Furthermore, open-loop playback on a Kinova Gen3 robot arm demonstrates the physical accuracy of the whole-arm manipulation trajectories. Code is available at https://bit.ly/ilqr_hc and videos can be found at https://youtu.be/IqxJKbM8_ms.
翻译:隐性接触轨迹优化为自动生成复杂且富于接触的机器人操作和移动行为提供了一种吸引人的方法。然而,由于确保数字可靠性和物理现实性的挑战,这些技术的可扩缩性受到限制。在本文件中,我们介绍了初步结果,表明循环线性二次曲线调节(iLQR)算法以及最近提议的基于压力的实地水力弹性接触模式能够通过接触实现可靠且实际现实的轨道优化。我们使用这种方法合成具有接触力的多行为,如四重移动和全臂操纵。此外,Kinova Gen3机器人臂的开路回转显示整件武器操纵轨迹的物理准确性。代码可在https://bit.ly/ilqr_hc查阅,视频可在https://youtu.be/IqxJKKbM8_ms查阅。