For medical image analysis, segmentation models trained on one or several domains lack generalization ability to unseen domains due to discrepancies between different data acquisition policies. We argue that the degeneration in segmentation performance is mainly attributed to overfitting to source domains and domain shift. To this end, we present a novel generalizable medical image segmentation method. To be specific, we design our approach as a multi-task paradigm by combining the segmentation model with a self-supervision domain-specific image restoration (DSIR) module for model regularization. We also design a random amplitude mixup (RAM) module, which incorporates low-level frequency information of different domain images to synthesize new images. To guide our model be resistant to domain shift, we introduce a semantic consistency loss. We demonstrate the performance of our method on two public generalizable segmentation benchmarks in medical images, which validates our method could achieve the state-of-the-art performance.
翻译:就医学图像分析而言,由于不同数据获取政策之间的差异,在一个或多个领域培训的分解模型缺乏对隐蔽域的概括性能力。我们认为,分解性能的变异主要归因于来源域和域变异。为此,我们提出了一种新的通用医学图象分解方法。具体地说,我们设计了一种多任务模式,将分解模型与自我监督域图象恢复模块相结合,用于模型正规化。我们还设计了一个随机调控混合模块,其中包括不同域图象的低频率信息,以合成新图像。为了指导我们的模型抵御域变换,我们引入了一种语义一致性损失。我们展示了我们在医学图象两个公开通用分解基准上的方法的性能,这验证了我们的方法能够实现最先进的性能。