This paper presents an aligned multi-temporal and multi-resolution satellite image dataset for research in change detection. We expect our dataset to be useful to researchers who want to fuse information from multiple satellites for detecting changes on the surface of the earth that may not be fully visible in any single satellite. The dataset we present was created by augmenting the SpaceNet-7 dataset with temporally parallel stacks of Landsat and Sentinel images. The SpaceNet-7 dataset consists of time-sequenced Planet images recorded over 101 AOIs (Areas-of-Interest). In our dataset, for each of the 60 AOIs that are meant for training, we augment the Planet datacube with temporally parallel datacubes of Landsat and Sentinel images. The temporal alignments between the high-res Planet images, on the one hand, and the Landsat and Sentinel images, on the other, are approximate since the temporal resolution for the Planet images is one month -- each image being a mosaic of the best data collected over a month. Whenever we have a choice regarding which Landsat and Sentinel images to pair up with the Planet images, we have chosen those that had the least cloud cover. A particularly important feature of our dataset is that the high-res and the low-res images are spatially aligned together with our MuRA framework presented in this paper. Foundational to the alignment calculation is the modeling of inter-satellite misalignment errors with polynomials as in NASA's AROP algorithm. We have named our dataset MuRA-T for the MuRA framework that is used for aligning the cross-satellite images and "T" for the temporal dimension in the dataset.
翻译:本文提供了一个匹配的多时和多分辨率卫星图像数据集, 用于对变化探测进行研究。 我们期待我们的数据集对研究人员有用, 他们想将来自多个卫星的信息结合到多个卫星的信息中, 以探测可能无法在任何一颗卫星中完全可见的地球表面的变化。 我们提供的数据集是用时间平行的大地卫星和哨兵图像堆来增加SpaceNet-7数据集的。 SpaceNet-7数据集由101 AOIs( Areas of- Interest) 上记录的时间序列行星图像组成。 在我们的数据集中, 60 AOIs( 用于培训的60个 AOIs)中的每一位, 我们用时间平行的大地卫星和 Sentinel 图像来补充地球表面的变化。 我们所展示的Great-7 和Landsat 和 Sentinel 图像之间的时间比对齐是大约一个月的时间分辨率解析。 每个图像都是一个月内收集的最佳数据的框架 。 当我们有一个选择时, 我们所选择的 ALSAT 和 Sentinal 图像中最低的图像比对等的图像比对齐时, 。</s>