Surface reconstruction from noisy, non-uniformly, and unoriented point clouds is a fascinating yet difficult problem in computer vision and computer graphics. In this paper, we propose Neural-IMLS, a novel approach that learning noise-resistant signed distance function (SDF) for reconstruction. Instead of explicitly learning priors with the ground-truth signed distance values, our method learns the SDF from raw point clouds directly in a self-supervised fashion by minimizing the loss between the couple of SDFs, one obtained by the implicit moving least-square function (IMLS) and the other by our network. Finally, a watertight and smooth 2-manifold triangle mesh is yielded by running Marching Cubes. We conduct extensive experiments on various benchmarks to demonstrate the performance of Neural-IMLS, especially for point clouds with noise.
翻译:从吵闹、非统一和不定向的点云进行表面重建是计算机视觉和计算机图形中一个令人着迷但困难的问题。 在本文中,我们提议采用神经-IMLS, 这是一种新颖的方法, 学习耐噪音的签名远程功能( SDF) 来重建。 我们的方法不是明确学习地面实况签名距离值的预科,而是直接以自我监督的方式从原始点云中学习SDF, 尽可能减少两对SDF的损失, 其中一个是通过隐含移动最小平方函数( IMLS) 获得的, 另一个是通过网络获得的。 最后, 通过运行三月立方立方, 产生了一个水分和平滑的两边三角网。 我们在不同基准上进行了广泛的实验, 以展示神经- IMLS的性能, 特别是有噪音的点云的性能。