We consider the problem of quantizing a linear model learned from measurements $\mathbf{X} = \mathbf{W}\boldsymbol{\theta} + \mathbf{v}$. The model is constrained to be representable using only $dB$-bits, where $B \in (0, \infty)$ is a pre-specified budget and $d$ is the dimension of the model. We derive an information-theoretic lower bound for the minimax risk under this setting and show that it is tight with a matching upper bound. This upper bound is achieved using randomized embedding based algorithms. We propose randomized Hadamard embeddings that are computationally efficient while performing near-optimally. We also show that our method and upper-bounds can be extended for two-layer ReLU neural networks. Numerical simulations validate our theoretical claims.
翻译:我们考虑对从 $\ mathbf{X} =\ mathbf{W ⁇ boldsymbol_theta} +\ mathbf{v} $ 所学的线性模型进行量化的问题。 该模型只能使用 $dB$-bit 来代表, $B\ in (0,\ infty) 是预指定的预算, $d$(美元) 是模型的维度。 我们为这个设置下的小麦克斯风险获取了一个信息理论下限, 并显示它与匹配的上界十分紧紧。 这个上界是使用随机嵌入算法实现的。 我们建议随机化的Hadamadmard嵌入器在进行近极性时具有计算效率。 我们还表明, 我们的方法和上界可以扩展为两层 ReLU 神经网络。 数字模拟可以验证我们的理论主张 。