The Importance Markov chain is a new algorithm bridging the gap between rejection sampling and importance sampling, moving from one to the other using a tuning parameter. Based on a modified sample of an auxiliary Markov chain targeting an auxiliary target (typically with a MCMC kernel), the Importance Markov chain amounts to construct an extended Markov chain where the marginal distribution of the first component converges to the target distribution. We obtain the geometric ergodicity of this extended kernel, under mild assumptions on the auxiliary kernel. As a typical example, the auxiliary target can be chosen as a tempered version of the target, and the algorithm then allows to explore more easily multimodal distributions. A Law of Large Numbers and a Central limit theorem are also obtained. Computationally, the algorithm is easy to implement and can use preexisting librairies to simulate the auxiliary chain.
翻译:重要 Markov 链是一种新的算法,它缩小了拒绝取样和重要性取样之间的差距,使用调试参数从一个向另一个移动。根据针对辅助目标的辅助性Markov 链(通常使用MCMC内核)经过修改的样本, 重要 Markov 链相当于建造一个扩展的Markov 链, 使第一个部件的边际分布与目标分布相匹配。 我们在辅助内核的轻度假设下获得了这一扩展内核的几何异性。 典型的例子是, 辅助目标可以被选为目标的温和型版本, 然后算法可以更容易地探索多式分布。 还获得了大数字法和中央限制标语法。 比较而言, 算法容易实施,并且可以使用先前存在的伸缩来模拟辅助性链 。