Importance Sampling (IS) is a method for approximating expectations under a target distribution using independent samples from a proposal distribution and the associated importance weights. In many applications, the target distribution is known only up to a normalization constant, in which case self-normalized IS (SNIS) can be used. While the use of self-normalization can have a positive effect on the dispersion of the estimator, it introduces bias. In this work, we propose a new method, BR-SNIS, whose complexity is essentially the same as that of SNIS and which significantly reduces bias without increasing the variance. This method is a wrapper in the sense that it uses the same proposal samples and importance weights as SNIS, but makes clever use of iterated sampling--importance resampling (ISIR) to form a bias-reduced version of the estimator. We furnish the proposed algorithm with rigorous theoretical results, including new bias, variance and high-probability bounds, and these are illustrated by numerical examples.
翻译:重要性抽样(IS)是使用一份提案分布及相关重要性加权数的独立样本,在目标分布下,使用一份独立样本,使目标分布接近预期值的一种方法。在许多应用中,目标分布只知道到一个正常化常数,在这种情况下,可以使用自我正常化的IS(SNSIS)。虽然使用自我正常化可以对估计数字的分散产生积极的影响,但会引入偏差。在这项工作中,我们提出了一个新方法,即BR-SNIS,其复杂性基本上与SNIS相同,并大大减少偏向,同时又不增加差异。这种方法是一种包装,因为它使用与SNIS相同的建议样本和重要重量,但明智地使用热度抽样-进口再抽样(ISIR)来形成一个偏差式的估量器。我们提供了严格的理论算法,包括新的偏差、差异和高概率约束,这些用数字示例加以说明。