In this work, we study the convergence and performance of nonlinear solvers for the Bidomain equations after decoupling the ordinary and partial differential equations of the cardiac system. We first rigorously prove that Quasi-Newton methods such as BFGS and nonlinear Conjugate-Gradient such as Fletcher-Reeves methods are globally convergent, by studying an auxiliary variational problem under physically reasonable hypotheses. Then, we compare several nonlinear solvers in terms of execution time, robustness with respect to the data and parallel scalability. Our results suggest that Quasi-Newton methods are the best choice for this type of problem, being faster than standard Newton-Krylov methods without hindering their robustness or scalability. In addition, first order methods are also competitive, and represent a better alternative for matrix-free implementations, which are suitable for GPU computing.


翻译:在这项工作中,我们在分离了心脏系统的普通和部分差异方程式之后,研究了Bidomain方程式的非线性溶解器的趋同和性能。我们首先严格地证明,如BFGS和Fletcher-Reeves等非线性共振器方法等准线性共振法在全球是趋同的,方法是在物理上合理的假设下研究辅助性变异问题。然后,我们比较了几个非线性溶解器,从执行时间、数据坚固性和平行可伸缩性等方面看。我们的结果表明,Quasi-Newton 方法是这类问题的最佳选择,比标准的牛顿-克利洛夫方法更快,同时又不妨碍其稳健性或可伸缩性。此外,第一顺序方法也是竞争性的,是适合 GPU 计算机的无矩阵执行的更好替代方法。

0
下载
关闭预览

相关内容

拟牛顿法(Quasi-Newton Methods)是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W. C. Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员