We develop an optimization-based algorithm for parametric model order reduction (PMOR) of linear time-invariant dynamical systems. Our method aims at minimizing the $\mathcal{H}_\infty \otimes \mathcal{L}_\infty$ approximation error in the frequency and parameter domain by an optimization of the reduced order model (ROM) matrices. State-of-the-art PMOR methods often compute several nonparametric ROMs for different parameter samples, which are then combined to a single parametric ROM. However, these parametric ROMs can have a low accuracy between the utilized sample points. In contrast, our optimization-based PMOR method minimizes the approximation error across the entire parameter domain. Moreover, due to our flexible approach of optimizing the system matrices directly, we can enforce favorable features such as a port-Hamiltonian structure in our ROMs across the entire parameter domain. Our method is an extension of the recently developed SOBMOR-algorithm to parametric systems. We extend both the ROM parameterization and the adaptive sampling procedure to the parametric case. Several numerical examples demonstrate the effectiveness and high accuracy of our method in a comparison with other PMOR methods.
翻译:我们开发了一种基于优化的算法,用于减少线性时差动态系统(PMOR)的线性时差动力系统。我们的方法旨在通过优化减序模型(ROM)矩阵,最大限度地减少频率和参数域中$mathcal{H ⁇ infty=美元在频率和参数域中的近似差错。最先进的PMOR方法经常为不同参数样本计算若干非参数性ROM,然后将其与单一参数ROBM-algorithm结合起来。然而,这些参数性ROM在使用过的抽样点之间精确度较低。相比之下,我们基于优化的PMOR方法将整个参数域内的近似差最小化。此外,由于我们直接优化系统矩阵的灵活做法,我们可以在整个参数域内执行诸如港口-Hamiltonian结构等有利的特征。我们的方法是将最近开发的SOBMOM-algorithm(SObomarm-algorithm)系统扩展至参数系统。我们将ROM参数参数参数参数的参数化和适应性取样程序推广到其他高精确性PMOR法的参数比较。几个数字例子展示显示了我们的其他方法的有效性。