This article aims to investigate how circuit-based hybrid Quantum Convolutional Neural Networks (QCNNs) can be successfully employed as image classifiers in the context of remote sensing. The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network. The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case, and tested on the EuroSAT dataset used as reference benchmark. The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts. Moreover, investigation of various quantum circuits shows that the ones exploiting quantum entanglement achieve the best classification scores. This study underlines the potentialities of applying quantum computing to an EO case study and provides the theoretical and experimental background for futures investigations.
翻译:本条旨在调查如何成功地利用电路混合量子变异神经网络(QCNNs)作为遥感方面的图像分类器(QCNNs),混合质子网络通过在标准神经网络中引入量子层来丰富CNN的古典结构,这项工作中拟议的新型QCNN适用于土地利用和土地覆盖(LULC)分类,作为地球观测(EO)使用案例选择,并在用作参照基准的EuroSAT数据集中测试。多级分类的结果证明所提出的方法的有效性,表明QCNN的性能高于古典对应方。此外,对各种量子电路的调查表明,利用量子缠绕的量子电路达到了最佳的分类分数。这项研究强调了将量子计算应用于EO案例研究的潜力,并为未来调查提供了理论和实验背景。