We propose a novel deep learning method for shadow removal. Inspired by physical models of shadow formation, we use a linear illumination transformation to model the shadow effects in the image that allows the shadow image to be expressed as a combination of the shadow-free image, the shadow parameters, and a matte layer. We use two deep networks, namely SP-Net and M-Net, to predict the shadow parameters and the shadow matte respectively. This system allows us to remove the shadow effects from images. We then employ an inpainting network, I-Net, to further refine the results. We train and test our framework on the most challenging shadow removal dataset (ISTD). Our method improves the state-of-the-art in terms of root mean square error (RMSE) for the shadow area by 20\%. Furthermore, this decomposition allows us to formulate a patch-based weakly-supervised shadow removal method. This model can be trained without any shadow-free images (that are cumbersome to acquire) and achieves competitive shadow removal results compared to state-of-the-art methods that are trained with fully paired shadow and shadow-free images. Last, we introduce SBU-Timelapse, a video shadow removal dataset for evaluating shadow removal methods.


翻译:我们提出一个新的深层次清除阴影的学习方法。 在阴影形成物理模型的启发下, 我们使用线性光化转换来模拟图像中的影子效应, 使阴影图像能够以无阴影图像、 阴影参数和毛层的组合来表达。 我们使用两个深层网络, 即 SP- Net 和 M- Net, 来分别预测阴影参数和阴影垫。 这个系统可以让我们从图像中去除阴影效应。 然后我们使用一个涂漆网络 I- Net 来进一步完善结果。 我们用最具挑战性的阴影清除数据集( ISTD) 来培训和测试我们的框架。 我们的方法在20 \\\ 之前改进了阴影区域根平方差错误( RMSE ) 。 此外, 这个分解可以让我们制定一种基于偏差的、 微弱的阴影清除方法。 这个模型可以在没有任何无阴影图像( 难以获取) 的情况下接受培训, 并实现竞争性的影子清除结果, 与用完全对齐的阴影清除阴影和阴影时空图像来训练的状态方法相比。 我们最后, 引入一个以完全消除阴影和无阴影的图像的图像的图像。

0
下载
关闭预览

相关内容

 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
已删除
将门创投
8+阅读 · 2019年8月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2021年3月11日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年8月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员