Reaching agreement despite noise in communication is a fundamental problem in multi-agent systems. Here we study this problem under an idealized model, where it is assumed that agents can sense the general tendency in the system. More specifically, we consider $n$ agents, each being associated with a real-valued number. In each round, each agent receives a noisy measurement of the average value, and then updates its value, which is in turn perturbed by random drift. We assume that both noises in measurements and drift follow Gaussian distributions. What should be the updating policy of agents if their goal is to minimize the expected deviation of the agents' values from the average value? We prove that a distributed weighted-average algorithm optimally minimizes this deviation for each agent, and for any round. Interestingly, this optimality holds even in the centralized setting, where a master agent can gather all the agents' measurements and instruct a move to each agent.We find this result surprising since it can be shown that the total measurements obtained by all agents contain strictly more information about the deviation of Agent $i$ from the average value, than the information contained in the measurements obtained by Agent $i$ alone. Although this information is relevant for Agent $i$, it is not processed by it when running a weighted-average algorithm. Nevertheless, the weighted-average algorithm is optimal, since by running it, other agents manage to fully process this information in a way that perfectly benefits Agent $i$.Finally, we also analyze the drift of the center of mass and show that no distributed algorithm can achieve drift that is as small as the one that can be achieved by the best centralized algorithm. In light of this, we also show that the drift associated with our weighted-average algorithm incurs a relatively small overhead over the best possible drift in the centralized setting.


翻译:在多试剂系统中,尽管通信中出现噪音,但仍要达成协议,这是多试剂系统的一个根本问题。 我们在这里根据一种理想化的模式研究这一问题, 假设代理人能够感觉到系统中的一般趋势。 更具体地说, 我们考虑的是, 美元代理, 每一个代理都与实际价值挂钩。 有趣的是, 在每轮中, 每一个代理都得到平均价值的噪音测量, 然后更新其价值, 而这反过来又会受到随机漂移的干扰。 我们认为, 测量和漂移中的噪音是多试剂分布的一个根本问题。 如果代理人的更新政策的目标是最大限度地减少代理人价值与平均价值的预期偏差? 我们证明, 一个分布的加权平均算法, 最大限度地减少每个代理商的这种偏差, 有趣的是, 这个最佳代理商可以收集所有代理商的测量结果, 并且我们通过一个正常的高度的计算法, 最精确的算法可以显示, 最精确的 美元 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员