The capability to extract task specific, semantic information from raw sensory data is a crucial requirement for many applications of mobile robotics. Autonomous inspection of critical infrastructure with Unmanned Aerial Vehicles (UAVs), for example, requires precise navigation relative to the structure that is to be inspected. Recently, Artificial Intelligence (AI)-based methods have been shown to excel at extracting semantic information such as 6 degree-of-freedom (6-DoF) poses of objects from images. In this paper, we propose a method combining a state-of-the-art AI-based pose estimator for objects in camera images with data from an inertial measurement unit (IMU) for 6-DoF multi-object relative state estimation of a mobile robot. The AI-based pose estimator detects multiple objects of interest in camera images along with their relative poses. These measurements are fused with IMU data in a state-of-the-art sensor fusion framework. We illustrate the feasibility of our proposed method with real world experiments for different trajectories and number of arbitrarily placed objects. We show that the results can be reliably reproduced due to the self-calibrating capabilities of our approach.
翻译:从原始感官数据中提取具体任务、语义信息的能力是许多移动机器人应用的关键要求。例如,对使用无人驾驶飞行器(UAVs)的关键基础设施进行自动检查,需要相对于将要检查的结构进行精确的导航。最近,人工智能(AI)方法显示在从图像中提取6度自由(6-DoF)显示物体构成的6度自由(6-DoF)等语义信息方面优异。在本文中,我们提议一种方法,将一个最新、基于AI的图像中带有惯性测量单位(IMU)的数据的相机中物体与一个惯性测量单位(IMU)的数据对一个移动机器人的多点相对状况进行自动检查。基于AI的估测器检测器检测了相机图像中多个感兴趣的对象及其相对构成。这些测量器与IMU数据结合到一个最先进的感应感应感应式传感器框架。我们介绍了我们所提议的方法与真实的世界实验不同轨迹和任意放置物体数目的可行性。我们展示了能够可靠地复制的结果。</s>