Higher-order time integration methods that unconditionally preserve the positivity and linear invariants of the underlying differential equation system cannot belong to the class of general linear methods. This poses a major challenge for the stability analysis of such methods since the new iterate depends nonlinearly on the current iterate. Moreover, for linear systems, the existence of linear invariants is always associated with zero eigenvalues, so that steady states of the continuous problem become non-hyperbolic fixed points of the numerical time integration scheme. Altogether, the stability analysis of such methods requires the investigation of non-hyperbolic fixed points for general nonlinear iterations. Based on the center manifold theory for maps we present a theorem for the analysis of the stability of non-hyperbolic fixed points of time integration schemes applied to problems whose steady states form a subspace. This theorem provides sufficient conditions for both the stability of the method and the local convergence of the iterates to the steady state of the underlying initial value problem. This theorem is then used to prove the unconditional stability of the MPRK22($\alpha$)-family of modified Patankar-Runge-Kutta schemes when applied to arbitrary positive and conservative linear systems of differential equations. The theoretical results are confirmed by numerical experiments.
翻译:无条件维护基本差分方程系统的正数和线性变异性的较高顺序时间整合方法不能属于一般线性方法的类别,这对这种方法的稳定分析构成重大挑战,因为新的迭代不依赖目前的迭代。此外,对于线性系统而言,线性变异物的存在总是与零源值相联系,因此,持续问题的稳定性状态成为数字整合计划的非超常固定点。总体而言,对此类方法的稳定性分析要求调查一般非线性迭代的非超级固定点。根据对地图的中央多重理论,我们提出了一个用于分析对稳定状态形成子空间的问题适用的非顺位固定时间组合计划稳定性的理论。这种理论为方法的稳定性和连续问题的当地趋同与基本初始值问题的稳定状态提供了充分条件。随后,这种理论被用来证明MPRK22($\alpha)固定点固定点固定点固定点固定点的无条件稳定性固定点。当对正式卡-直方程式的理论实验结果被应用时,对正式卡-直方程式的理论-直方形实验结果被应用到正式卡-直方形的理论-卡式的理论-卡方形系统被证实。