In this work, we study online graph problems with monotone-sum objectives. We propose a general two-fold greedy algorithm that references yardstick algorithms to achieve $t$-competitiveness while incurring at most $\frac{w_{\text{max}}\cdot(t+1)}{\min\{1, w_\text{min}\}\cdot(t-1)}$ amortized recourse, where $w_{\text{max}}$ and $w_{\text{min}}$ are the largest value and the smallest positive value that can be assigned to an element in the sum. We further show that the general algorithm can be improved for three classical graph problems by carefully choosing the referenced algorithm and tuning its detailed behavior. For Independent Set, we refine the analysis of our general algorithm and show that $t$-competitiveness can be achieved with $\frac{t}{t-1}$ amortized recourse. For Maximum Cardinality Matching, we limit our algorithm's greed to show that $t$-competitiveness can be achieved with $\frac{(2-t^*)}{(t^*-1)(3-t^*)}+\frac{t^*-1}{3-t^*}$ amortized recourse, where $t^*$ is the largest number such that $t^*= 1 +\frac{1}{j} \leq t$ for some integer $j$. For Vertex Cover, we show that our algorithm guarantees a competitive ratio strictly smaller than $2$ for any finite instance in polynomial time while incurring at most $3.33$ amortized recourse. We beat the almost unbreakable $2$-approximation in polynomial time by using the optimal solution as the reference without computing it. We remark that this online result can be used as an offline approximation result (without violating the unique games conjecture) to partially improve upon the constructive algorithm of Monien and Speckenmeyer.
翻译:在这项工作中,我们研究单调和单调目标的在线图表问题。 我们提出一个一般的双倍贪婪算法, 以标准算法为基准, 实现美元竞争力。 我们进一步显示, 通过仔细选择引用的运算法并调整其详细行为, 可以改进我们的一般算法分析, 并显示美元( t+1)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\