The significant presence of demand charges in electric bills motivates large-load customers to utilize energy storage to reduce the peak procurement from the grid. We herein study the problem of energy storage allocation for peak minimization, under the online setting where irrevocable decisions are sequentially made without knowing future demands. The problem is uniquely challenging due to (i) the coupling of online decisions across time imposed by the inventory constraints and (ii) the noncumulative nature of the peak procurement. We apply the CR-Pursuit framework and address the challenges unique to our minimization problem to design an online algorithm achieving the optimal competitive ratio (CR) among all online algorithms. We show that the optimal CR can be computed in polynomial time by solving a linear number of linear-fractional problems. More importantly, we generalize our approach to develop an \emph{anytime-optimal} online algorithm that achieves the best possible CR at any epoch, given the inputs and online decisions so far. The algorithm retains the optimal worst-case performance and attains adaptive average-case performance. Trace-driven simulations show that our algorithm can decrease the peak demand by an extra 19% compared to baseline alternatives under typical settings.
翻译:电单中有大量需求收费,这促使大负荷客户利用能源储存来减少从电网中采购的高峰。我们在此研究能源储存分配问题,以便在网上环境下,在不知晓未来需求的情况下,按顺序作出不可撤销的决定,最大限度地减少高峰。这个问题具有独特的挑战性,因为(一) 库存限制造成在线决策的跨时间结合,以及(二) 高峰采购的非累积性。我们应用了CR-Pursitu 框架,并应对我们最小化问题特有的挑战,设计一个在线算法,在所有在线算法中实现最佳竞争比率(CR)。我们表明,最佳的CR可以在多种时间通过解决线性折线性问题来计算。更重要的是,我们推广了我们的方法,即根据输入和在线决定,在任何地区实现尽可能最佳的CRR,在任何地区实现最佳的CR;我们采用CR-Pursiet框架,并处理我们最坏的情况,并实现适应性平均业绩。追踪模拟显示,我们的计算法可以减少顶点需求,在超标准情况下,以19 %的比基线替代品降低峰值。