Learning a faithful directed acyclic graph (DAG) from samples of a joint distribution is a challenging combinatorial problem, owing to the intractable search space superexponential in the number of graph nodes. A recent breakthrough formulates the problem as a continuous optimization with a structural constraint that ensures acyclicity (Zheng et al., 2018). The authors apply the approach to the linear structural equation model (SEM) and the least-squares loss function that are statistically well justified but nevertheless limited. Motivated by the widespread success of deep learning that is capable of capturing complex nonlinear mappings, in this work we propose a deep generative model and apply a variant of the structural constraint to learn the DAG. At the heart of the generative model is a variational autoencoder parameterized by a novel graph neural network architecture, which we coin DAG-GNN. In addition to the richer capacity, an advantage of the proposed model is that it naturally handles discrete variables as well as vector-valued ones. We demonstrate that on synthetic data sets, the proposed method learns more accurate graphs for nonlinearly generated samples; and on benchmark data sets with discrete variables, the learned graphs are reasonably close to the global optima. The code is available at \url{https://github.com/fishmoon1234/DAG-GNN}.
翻译:由于在图形节点数中难以找到的搜索空间超光化模型,从联合分布样本中忠实地学习一个方向方向的自行车图(DAG)是一个具有挑战性的组合问题。最近的一项突破将这一问题描绘成一种持续优化,其结构制约确保了周期性(Zheng等人,2018年)。作者对线性结构方程模型(SEM)和最小方位损失功能采用了统计上理由充分但又有限的方法。受能够捕捉复杂的非线性绘图的深层次学习的广泛成功激励,我们在此工作中提出了一个深层次的基因模型,并应用了结构制约的变异模型来学习DAG。在基因模型的核心是由新型图形神经网络结构参数参数参数参数化的变异自动电码,我们用这个模型对DAG-GNNN。除了更丰富的能力外,拟议模型的一个优点是,它自然处理离式变量以及矢量值值的变量。我们在合成数据集上,拟议的方法在非线性数字基/数字基数上学习更精确的离心的图表。在可获取的离式模型上,在可比较的G_G_G_BAR的模型上,在可选择的模型上是接近的模型上学习的。