1、 Adversarial Graph Embedding for Ensemble Clustering

作者:Zhiqiang Tao , Hongfu Liu , Jun Li , ZhaowenWang and Yun Fu;

摘要:Ensemble Clustering通常通过图分区方法将基本分区集成到共识分区(consensus partition)中,但这种方法存在两个局限性: 1) 它忽略了重用原始特征; 2)获得具有可学习图表示的共识分区(consensus partition)仍未得到充分研究。在本文中,我们提出了一种新颖的对抗图自动编码器(AGAE)模型,将集成聚类结合到深度图嵌入过程中。具体地,采用图卷积网络作为概率编码器,将特征内容信息与共识图信息进行联合集成,并使用简单的内积层作为解码器,利用编码的潜变量(即嵌入表示)重建图。此外,我们还开发了一个对抗正则化器来指导具有自适应分区依赖先验的网络训练。通过对8个实际数据集的实验,证明了AGAE在几种先进的深度嵌入和集成聚类方法上的有效性。

网址:https://www.ijcai.org/proceedings/2019/0494.pdf

2、Attributed Graph Clustering via Adaptive Graph Convolution

作者:Xiaotong Zhang, Han Liu, Qimai Li and Xiao-Ming Wu;

摘要:Attributed Graph聚类是一项具有挑战性的工作,它要求对图结构和节点属性进行联合建模。图卷积网络的研究进展表明,图卷积能够有效地将结构信息和内容信息结合起来,近年来基于图卷积的方法在一些实际属性网络上取得了良好的聚类性能。然而,对于图卷积如何影响聚类性能以及如何正确地使用它来优化不同图的性能,人们的了解有限。现有的方法本质上是利用固定低阶的图卷积,只考虑每个节点几跳内的邻居,没有充分利用节点关系,忽略了图的多样性。本文提出了一种自适应图卷积方法,利用高阶图卷积捕获全局聚类结构,并自适应地为不同的图选择合适的顺序。通过对基准数据集的理论分析和大量实验,验证了该方法的有效性。实验结果表明,该方法与现有的方法相比具有较好的优越性。

网址:https://www.zhuanzhi.ai/paper/bae18963457b08322d58e01c90e8e467

3、Dynamic Hypergraph Neural Networks

作者:Jianwen Jiang , Yuxuan Wei , Yifan Feng , Jingxuan Cao and Yue Gao;

摘要:近年来,基于图/超图(graph/hypergraph)的深度学习方法引起了研究者的广泛关注。这些深度学习方法以图/超图结构作为模型的先验知识。然而,隐藏的重要关系并没有直接表现在内在结构中。为了解决这个问题,我们提出了一个动态超图神经网络框架(DHGNN),它由两个模块的堆叠层组成:动态超图构造(DHG)和超图卷积(HGC)。考虑到最初构造的超图可能不适合表示数据,DHG模块在每一层上动态更新超图结构。然后引入超图卷积对超图结构中的高阶数据关系进行编码。HGC模块包括两个阶段:顶点卷积和超边界卷积,它们分别用于聚合顶点和超边界之间的特征。我们已经在标准数据集、Cora引文网络和微博数据集上评估了我们的方法。我们的方法优于最先进的方法。通过更多的实验验证了该方法对不同数据分布的有效性和鲁棒性。

网址:https://www.ijcai.org/proceedings/2019/0366.pdf

4、Exploiting Interaction Links for Node Classification with Deep Graph Neural Networks

作者:Hogun Park and Jennifer Neville;

摘要:节点分类是关系机器学习中的一个重要问题。然而,在图边表示实体间交互的场景中(例如,随着时间的推移),大多数当前方法要么将交互信息汇总为链接权重,要么聚合链接以生成静态图。在本文中,我们提出了一种神经网络结构,它可以同时捕获时间和静态交互模式,我们称之为Temporal-Static-Graph-Net(TSGNet)。我们的主要观点是,利用静态邻居编码器(可以学习聚合邻居模式)和基于图神经网络的递归单元(可以捕获复杂的交互模式),可以提高节点分类的性能。在我们对节点分类任务的实验中,与最先进的方法相比,TSGNet取得了显著的进步——与四个真实网络和一个合成数据集中的最佳竞争模型相比,TSGNet的分类错误减少了24%,平均减少了10%。

网址:https://www.ijcai.org/proceedings/2019/0447.pdf

5、Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks

作者:Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai and Philip S. Yu;

摘要:事件在现实世界中实时发生,可以是涉及多个人和物体的计划和组织场合。社交媒体平台发布了大量包含公共事件和综合话题的文本消息。然而,由于文本中事件元素的异构性以及显式和隐式的社交网络结构,挖掘社会事件是一项具有挑战性的工作。本文设计了一个事件元模式来表征社会事件的语义关联,并构建了一个基于事件的异构信息网络(HIN),该网络融合了外部知识库中的信息,提出了一种基于对偶流行度图卷积网络(PP-GCN)的细粒度社会事件分类模型。我们提出了一种基于事件间社会事件相似度(KIES)的知识元路径实例,并建立了一个加权邻域矩阵作为PP-GCN模型的输入。通过对真实数据收集的综合实验,比较各种社会事件检测和聚类任务。实验结果表明,我们提出的框架优于其他可选的社会事件分类技术。

网址:https://www.zhuanzhi.ai/paper/65dbfd1c2b65d01b2db1b66a3b4efdb6

6、Graph Contextualized Self-Attention Network for Session-based Recommendation

作者:Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang and Xiaofang Zhou;

摘要:基于会话的推荐旨在预测用户基于匿名会话的下一步行动,是许多在线服务(比如电子商务,媒体流)中的关键任务。近年来,在不使用递归网络和卷积网络的情况下,自注意力网络(SAN)在各种序列建模任务中取得了显著的成功。然而,SAN缺乏存在于相邻商品上的本地依赖关系,并且限制了其学习序列中商品的上下文表示的能力。本文提出了一种利用图神经网络和自注意力机制的图上下文自注意力模型(GC-SAN),用于基于会话的推荐。在GC-SAN中,我们动态地为会话序列构造一个图结构,并通过图神经网络(GNN)捕获丰富的局部依赖关系。然后,每个会话通过应用自注意力机制学习长期依赖关系。最后,每个会话都表示为全局首选项和当前会话兴趣的线性组合。对两个真实数据集的大量实验表明,GC-SAN始终优于最先进的方法。

网址:https://www.ijcai.org/proceedings/2019/0547.pdf

7、Graph Convolutional Network Hashing for Cross-Modal Retrieval

作者:Ruiqing Xu , Chao Li , Junchi Yan , Cheng Deng and Xianglong Liu;

摘要:基于深度网络的跨模态检索近年来取得了显著的进展。然而,弥补模态差异,进一步提高检索精度仍然是一个关键的瓶颈。本文提出了一种图卷积哈希(GCH)方法,该方法通过关联图学习模态统一的二进制码。一个端到端深度体系结构由三个主要组件构成:语义编码模块、两个特征编码网络和一个图卷积网络(GCN)。我们设计了一个语义编码器作为教师模块来指导特征编码过程,即学生模块,用于语义信息的挖掘。此外,利用GCN研究数据点之间的内在相似性结构,有助于产生有区别的哈希码。在三个基准数据集上的大量实验表明,所提出的GCH方法优于最先进的方法。

网址:https://www.ijcai.org/proceedings/2019/0138.pdf

成为VIP会员查看完整内容
0
73

相关内容

【导读】作为世界数据挖掘领域的最高级别的学术会议,ACM SIGKDD(国际数据挖掘与知识发现大会,简称 KDD)每年都会吸引全球领域众多专业人士参与。今年的 KDD大会计划将于 2020 年 8 月 23 日 ~27 日在美国美国加利福尼亚州圣地亚哥举行。上周,KDD 2020官方发布接收论文,共有1279篇论文提交到Research Track,共216篇被接收,接收率16.8%。近期KDD官网公布了接受论文列表,为此,上个月专知小编为大家整理了图神经网络相关的论文,这期小编继续为大家奉上KDD 2020必读的五篇图神经网络(GNN)相关论文-Part 2——多层次GCN、无监督预训练GCN、图Hash、GCN主题模型、采样

KDD 2020 Accepted Paper: https://www.kdd.org/kdd2020/accepted-papers

KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、

1. Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction

作者:Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, Katarzyna Musial

摘要:跨平台的账号匹配在社交网络分析中发挥着重要作用,并且有利于广泛的应用。然而,现有的方法要么严重依赖于高质量的用户生成内容(包括用户兴趣模型),要么只关注网络拓扑结构,存在数据不足的问题,这使得研究这个方向变得很困难。为了解决这一问题,我们提出了一种新的框架,该框架统一考虑了局部网络结构和超图结构上的多级图卷积。该方法克服了现有工作中数据不足的问题,并且不一定依赖于用户的人口统计信息。此外,为了使所提出的方法能够处理大规模社交网络,我们提出了一种两阶段的空间协调机制,在基于网络分区的并行训练和跨不同社交网络的帐户匹配中对齐嵌入空间。我们在两个大规模的真实社交网络上进行了广泛的实验。实验结果表明,该方法的性能比现有的模型有较大幅度的提高。

网址:

https://arxiv.org/abs/2006.01963

2. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training

作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang

摘要:图表示学习已经成为解决现实问题的一种强有力的技术。包括节点分类、相似性搜索、图分类和链接预测在内的各种下游图学习任务都受益于它的最新发展。然而,关于图表示学习的现有技术集中于领域特定的问题,并为每个图训练专用模型,这通常不可转移到领域之外的数据。受自然语言处理和计算机视觉在预训练方面的最新进展的启发,我们设计了图对比编码(Graph Contrastive Coding,GCC)一个无监督的图表示学习框架来捕捉跨多个网络的通用网络拓扑属性。我们将GCC的预训练任务设计为网络内部和网络之间的子图级别的实例判断,并利用对比学习来增强模型学习内在的和可迁移的结构表征能力。我们在三个图学习任务和十个图数据集上进行了广泛的实验。结果表明,GCC在一组不同的数据集上进行预训练,可以获得与从头开始的特定任务训练的方法相媲美或更好的性能。这表明,预训练和微调范式对图表示学习具有巨大的潜力。

网址:

https://arxiv.org/abs/2006.09963

代码链接:

https://github.com/THUDM/GCC

3. GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases

作者:Zongyue Qin, Yunsheng Bai, Yizhou Sun

摘要:图相似搜索的目的是根据给定的邻近度,即图编辑距离(GED),在图形数据库中找到与查询最相似的图。这是一个被广泛研究但仍具有挑战性的问题。大多数研究都是基于剪枝验证框架,该框架首先对非看好的图进行剪枝,然后在较小的候选集上进行验证。现有的方法能够管理具有数千或数万个图的数据库,但由于其精确的剪枝策略,无法扩展到更大的数据库。受到最近基于深度学习的语义哈希(semantic hashing)在图像和文档检索中的成功应用的启发,我们提出了一种新的基于图神经网络(GNN)的语义哈希,即GHash,用于近似剪枝。我们首先用真实的GED结果训练GNN,以便它学习生成嵌入和哈希码,以保持图之间的GED。然后建立哈希索引以实现恒定时间内的图查找。在回答一个查询时,我们使用哈希码和连续嵌入作为两级剪枝来检索最有希望的候选对象,并将这些候选对象发送到精确的求解器进行最终验证。由于我们的图哈希技术利用了近似剪枝策略,与现有方法相比,我们的方法在保持高召回率的同时,实现了显著更快的查询时间。实验表明,该方法的平均速度是目前唯一适用于百万级数据库的基线算法的20倍,这表明GHash算法成功地为解决大规模图形数据库的图搜索问题提供了新的方向。

网址:

http://web.cs.ucla.edu/~yzsun/papers/2020_KDD_GHashing.pdf

4. Graph Structural-topic Neural Network

作者:Qingqing Long, Yilun Jin, Guojie Song, Yi Li, Wei Lin

摘要:图卷积网络(GCNS)通过有效地收集节点的局部特征,取得了巨大的成功。然而,GCNS通常更多地关注节点特征,而较少关注邻域内的图结构,特别是高阶结构模式。然而,这种局部结构模式被显示为许多领域中的节点属性。此外,由于网络很复杂,每个节点的邻域由各种节点和结构模式的混合组成,不只是单个模式,所有这些模式上的分布都很重要。相应地,在本文中,我们提出了图结构主题神经网络,简称GraphSTONE,这是一种利用图的主题模型的GCN模型,使得结构主题广泛地从概率的角度捕捉指示性的图结构,而不仅仅是几个结构。具体地说,我们使用 anonymous walks和Graph Anchor LDA(一种LDA的变体,首先选择重要的结构模式)在图上建立主题模型,以降低复杂性并高效地生成结构主题。此外,我们设计了多视图GCNS来统一节点特征和结构主题特征,并利用结构主题来指导聚合。我们通过定量和定性实验对我们的模型进行了评估,我们的模型表现出良好的性能、高效率和清晰的可解释性。

网址:

https://arxiv.org/abs/2006.14278

代码链接:

https://github.com/YimiAChack/GraphSTONE/

5. Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks

作者:Weilin Cong, Rana Forsati, Mahmut Kandemir, Mehrdad Mahdavi

摘要:抽样方法(如节点抽样、分层抽样或子图抽样)已成为加速大规模图神经网络(GNNs)训练不可缺少的策略。然而,现有的抽样方法大多基于图的结构信息,忽略了最优化的动态性,导致随机梯度估计的方差较大。高方差问题在非常大的图中可能非常明显,它会导致收敛速度慢和泛化能力差。本文从理论上分析了抽样方法的方差,指出由于经验风险的复合结构,任何抽样方法的方差都可以分解为前向阶段的嵌入近似方差和后向阶段的随机梯度方差,这两种方差都必须减小,才能获得较快的收敛速度。我们提出了一种解耦的方差减小策略,利用(近似)梯度信息自适应地对方差最小的节点进行采样,并显式地减小了嵌入近似引入的方差。理论和实验表明,与现有方法相比,该方法即使在小批量情况下也具有更快的收敛速度和更好的泛化能力。

网址:

https://arxiv.org/abs/2006.13866

成为VIP会员查看完整内容
0
125

人工智能领域的顶会AAAI 2020将在2020年2月7日-12日在美国纽约举行。据官方统计消息,AAAI 2020今年共收到的有效论文投稿超过 8800 篇,其中 7737 篇论文进入评审环节,最终收录数量为 1591 篇,接收率 20.6%。开会在即,专知小编提前整理了AAAI 2020图神经网络(GNN)相关的接收论文,让大家先睹为快——跨模态、部分标签学习、交通流预测、少样本学习、贝叶斯图神经网络。

  1. Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification

作者:Renchun You, Zhiyao Guo, Lei Cui, Xiang Long, Yingze Bao, Shilei Wen

摘要:多标签图像和视频分类是计算机视觉中最基本也是最具挑战性的任务。主要的挑战在于捕获标签之间的空间或时间依赖关系,以及发现每个类的区别性特征的位置。为了克服这些挑战,我们提出将语义图嵌入的跨模态注意力机制用于多标签分类。基于所构造的标签图,我们提出了一种基于邻接关系的相似图嵌入方法来学习语义标签嵌入,该方法显式地利用了标签之间的关系。在学习标签嵌入的指导下,生成我们新颖的跨模态注意力图。在两个多标签图像分类数据集(MS-COCO和NUS-WIDE)上的实验表明,我们的方法优于其他现有的方法。此外,我们在一个大的多标签视频分类数据集(YouTube-8M Segments)上验证了我们的方法,评估结果证明了我们的方法的泛化能力。

网址: https://arxiv.org/abs/1912.07872

  1. General Partial Label Learning via Dual Bipartite Graph Autoencoder

作者:Brian Chen, Bo Wu, Alireza Zareian, Hanwang Zhang, Shih-Fu Chang

摘要:我们提出了一个实际但有挑战性的问题: 通用部分标签学习(General Partial Label Learning,GPLL)。相比传统的部分标签学习(Partial Label Learning,PLL)问题, GPLL将监督假设从从实例级别(标签集部分标记一个实例)放到了组级别: 1)标签集部分标签了一组实例, 其中组内 instance-label link annotations 丢失, 2)组间的link是允许的——组中的实例可以部分链接到另一个组中的标签集。这种模糊的组级监督在实际场景中更实用,因为不再需要实例级的附加标注,例如,在视频中组由一个帧中的人脸组成,并在相应的标题中使用名称集进行标记,因此不再需要对实例级进行命名。本文提出了一种新的图卷积网络(GCN)——Dual Bipartite Graph Autoencoder (DB-GAE)来解决GPLL的标签模糊问题。首先,我们利用组间的相互关系将实例组表示为dual bipartite图:组内图和组间图,它们相互补充以解决链接的歧义。其次,我们设计了一个GCN自动编码器来对它们进行编码和解码,其中的解码被认为是经过改进的结果。值得注意的是DB-GAE是自监督和转导的,因为它只使用组级的监督,而没有单独的offline训练阶段。对两个真实数据集的大量实验表明,DB-GAEG跟最佳baseline相比有着绝对的提升,0.159 的F1 score和24.8%的accuracy。我们还进一步分析了标签歧义的各个层次。

网址:

https://arxiv.org/abs/2001.01290

  1. GMAN: A Graph Multi-Attention Network for Traffic Prediction

作者:Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, Jianzhong Qi

摘要:由于交通系统的复杂性和影响因素的不断变化,长期的交通预测具有很大的挑战性。在本文中,我们以时空因素为研究对象,提出了一种多注意力图网络(graph multi-attention network ,GMAN)来预测道路网络图中不同位置的时间步长的交通状况。GMAN采用了一种encoder-decoder结构,其中编码器和解码器都由多个时空注意力块组成,以模拟时空因素对交通条件的影响。编码器对输入流量特征进行编码,解码器对输出序列进行预测。在编码器和解码器之间,应用转换注意力层来转换已编码的流量特征,以生成未来时间步长的序列表示作为解码器的输入。转换注意力机制模拟了历史时间步长与未来时间步长之间的直接关系,有助于缓解预测时间步长之间的误差传播问题。在两个现实世界中的交通预测任务(即交通量预测和交通速度预测)上的实验结果证明了GMAN的优越性。特别地,在提前1个小时的预测中,GMAN的MAE指标提高了4%,优于最新技术。源代码可在https://github.com/zhengchuanpan/GMAN找到。

网址:

https://arxiv.org/abs/1911.08415

  1. Graph Few-shot Learning via Knowledge Transfer

作者:Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, SuhangWang, Junzhou Huang, Nitesh V. Chawla, Zhenhui Li

摘要:对于具有挑战性的半监督节点分类问题,已经进行了广泛的研究。图神经网络(GNNs)作为一个前沿领域,近年来引起了人们极大的兴趣。然而,大多数GNN具有较浅的层,接收域有限,并且可能无法获得令人满意的性能,特别是在标记节点数量很少的情况下。为了解决这一问题,我们创新性地提出了一种基于辅助图的先验知识的graph few-shot learning (GFL)算法,以提高目标图的分类精度。具体来说,辅助图与目标之间共享一个可迁移的度量空间,该空间以节点嵌入和特定于图的原型嵌入函数为特征,便于结构知识的传递。对四个真实世界图数据集的大量实验和消融研究证明了我们提出的模型的有效性以及每个组件的贡献。

网址:

https://arxiv.org/abs/1910.03053

  1. Learning Cross-Modal Context Graph for Visual Grounding

作者:Yongfei Liu, Bo Wan, Xiaodan Zhu, Xuming He

摘要:Visual grounding是许多视觉语言任务中普遍存在的一个基本单元,但由于grounding实体的视觉和语言特征的巨大差异、强大的语境效应以及由此产生的语义歧义,visual grounding仍然具有挑战性。以前的研究主要集中在学习单个短语在有限的语境信息下的表达。针对其局限性,本文提出了一种languageguided graph representation表示方法来捕获grounding实体的全局上下文及其关系,并针对多短语visual grounding任务开发了一种跨模态图匹配策略。特别地,我们引入一个模块化图神经网络,通过消息传播分别计算短语和目标建议的上下文感知表示,然后引入一个基于图的匹配模块来生成全局一致的基础短语定位。我们在两阶段策略中联合训练整个图神经网络,并在Flickr30K Entities基准上对其进行评估。大量的实验表明,我们的方法比之前的技术有相当大的优势,证明了我们的基础框架的有效性。代码可以在https://github.com/youngfly11/LCMCG-PyTorch 找到。

网址:

https://arxiv.org/abs/1911.09042

  1. Learning from the Past: Continual Meta-Learning with Bayesian Graph Neural Networks

作者:Yadan Luo, Zi Huang, Zheng Zhang, Ziwei Wang, Mahsa Baktashmotlagh, Yang Yang

摘要:元学习(Meta-learning)用于few-shot learning,允许机器利用以前获得的知识作为优先级,从而在只有少量数据的情况下提高新任务的性能。然而,大多数主流模型都存在灾难性遗忘和鲁棒性不足的问题,因此不能充分保留或利用长期知识,同时容易导致严重的错误累积。本文提出了一种新的基于贝叶斯图神经网络(CML-BGNN)的连续元学习方法。通过将每个任务形成一个图,可以通过消息传递和历史迁移很好地保存任务内部和任务间的相关性。为了解决图初始化过程中的拓扑不确定性问题,我们使用了Bayes by Backprop算法,该算法利用amortized推理网络逼近任务参数的后验分布,并将其无缝地集成到端到端边缘学习中。在miniImageNet和tieredImageNet数据集上进行的大量实验证明了该方法的有效性和效率,与最先进的miniImageNet 5-way 1-shot分类任务相比,性能提高了42:8%。

网址:

https://arxiv.org/abs/1911.04695

  1. Neural Graph Embedding for Neural Architecture Search

作者:Wei Li, Shaogang Gong, Xiatian Zhu

摘要:现有的神经体系结构搜索((NAS))方法往往直接在离散空间或连续空间中进行搜索,忽略了神经网络的图形拓扑知识。考虑到神经网络本质上是有向无环图(DAG),这会导致搜索性能和效率欠佳。在这项工作中,我们通过引入一种新的神经图嵌入(NGE)思想来解决这个限制。具体来说,我们用神经DAG表示神经网络的构建块(即cell),并利用图卷积网络来传播和建模网络结构的固有拓扑信息。这导致可与现有的不同NAS框架集成的通用神经网络表示。大量实验表明,在图像分类和语义分割方面,NGE优于最新方法。

网址:

https://xiatian-zhu.github.io/papers/LiEtAl_AAAI2020.pdf

  1. RoadTagger: Robust Road Attribute Inference with Graph Neural Networks

作者:Songtao He, Favyen Bastani, Satvat Jagwani, Edward Park, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay Chawla, Samuel Madden, Mohammad Amin Sadeghi

摘要:从卫星图像中推断道路属性(例如车道数和道路类型)是一项挑战。通常,由于卫星图像的遮挡和道路属性的空间相关性,仅当考虑道路的较远路段时,道路上某个位置的道路属性才可能是显而易见的。因此,为了鲁棒地推断道路属性,模型必须整合分散的信息,并捕捉道路沿线特征的空间相关性。现有的解决方案依赖于图像分类器,无法捕获这种相关性,导致准确性较差。我们发现这种失败是由于一个基本的限制–图像分类器的有效接受范围有限。

为了克服这一局限性,我们提出了一种结合卷积神经网络(CNNs)和图神经网络(GNNs)来推断道路属性的端到端体系结构RoadTagger。使用GNN允许信息在路网图上传播,消除了图像分类器的接收域限制。我们在一个覆盖美国20个城市688平方公里面积的大型真实数据集和一个综合数据集上对RoadTagger进行了评估。在评估中,与基于CNN图像分类器的方法相比,RoadTagger提高了推理的准确性。此外,RoadTagger对卫星图像的中断具有较强的鲁棒性,能够学习复杂的inductive rule来聚合道路网络上分散的信息。

网址:

https://arxiv.org/abs/1912.12408

成为VIP会员查看完整内容
0
71

最近小编推出CVPR2019图卷积网络、CVPR2019生成对抗网络、【可解释性】,CVPR视觉目标跟踪,CVPR视觉问答,医学图像分割,图神经网络的推荐,CVPR域自适应, ICML图神经网络,ICML元学习相关论文,反响热烈。最近,ACL 2019最新接受文章出炉,大会共收到2905 篇论文投稿,其中660 篇被接收(接收率为22.7%)。小编发现,今年接受的文章结合GNN的工作有二三十篇,看来,图神经网络已经攻占NLP领域,希望其他领域的同学多多学习,看能否结合,期待好的工作!今天小编专门整理最新十篇ACL长文,图神经网络(GNN)+NLP—注意力机制引导图神经网络、Graph-to-Sequence、动态融合图网络、实体和关系抽取、Multi-hop阅读理解、多模态上下文图理解等。

1、Attention Guided Graph Convolutional Networks for Relation Extraction (注意力机制引导图神经网络的关系抽取)

ACL ’19

作者:Zhijiang Guo*, Yan Zhang* and Wei Lu

摘要:Dependency trees传递丰富的结构信息,这些信息对于提取文本中实体之间的关系非常有用。然而,如何有效利用相关信息而忽略Dependency trees中的无关信息仍然是一个具有挑战性的研究问题。现有的方法使用基于规则的hard-pruning策略来选择相关的部分依赖结构,可能并不总是产生最佳结果。本文提出了一种直接以全依赖树为输入的Attention Guided图卷积网络(AGGCNs)模型。我们的模型可以理解为一种soft-pruning方法,它自动学习如何有选择地关注对关系提取任务有用的相关子结构。在包括跨句n元关系提取和大规模句级关系提取在内的各种任务上的大量结果表明,我们的模型能够更好地利用全依赖树的结构信息,其结果显著优于之前的方法。

网址: http://www.statnlp.org/paper/2019/attention-guided-graph-convolutional-networks-relation-extraction.html

代码链接:

https://github.com/Cartus/AGGCN_TACRED

2、Cognitive Graph for Multi-Hop Reading Comprehension at Scale(大规模认知图的Multi-Hop阅读理解)

ACL ’19

作者:Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, Jie Tang

摘要:我们提出了一种新的基于CogQA的web级文档multi-hop问答框架。该框架以认知科学的对偶过程理论为基础,通过协调隐式抽取模块(System 1)和显式推理模块(System 2),在迭代过程中逐步构建认知图,在给出准确答案的同时,进一步提供了可解释的推理路径。具体来说,我们基于BERT和graph neural network (GNN)的实现有效地处理了HotpotQA fullwiki数据集中数百万个multi-hop推理问题的文档,在排行榜上获得了34.9的F1 score,而最佳竞争对手的得分为23.6。

网址: https://arxiv.org/abs/1905.05460

代码链接: https://github.com/THUDM/CogQA

3、Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model(使用Graph-to-Sequence模型为中文文章生成连贯的评论)

ACL ’19

作者:Wei Li, Jingjing Xu, Yancheng He, Shengli Yan, Yunfang Wu, Xu sun

摘要:自动文章评论有助于鼓励用户参与和在线新闻平台上的互动。然而,对于传统的基于encoder-decoder的模型来说,新闻文档通常太长,这往往会导致一般性和不相关的评论。在本文中,我们提出使用一个Graph-to-Sequence的模型来生成评论,该模型将输入的新闻建模为一个主题交互图。通过将文章组织成图结构,我们的模型可以更好地理解文章的内部结构和主题之间的联系,这使得它能够更好地理解故事。我们从中国流行的在线新闻平台Tencent Kuaibao上收集并发布了一个大规模的新闻评论语料库。广泛的实验结果表明,与几个强大的baseline模型相比,我们的模型可以产生更多的连贯性和信息丰富性的评论。

网址: https://arxiv.org/abs/1906.01231

代码链接: https://github.com/lancopku/Graph-to-seq-comment-generation

4、Dynamically Fused Graph Network for Multi-hop Reasoning(基于动态融合图网络的Multi-hop Reasoning)

ACL ’19

作者:Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu

摘要:近年来,基于文本的问答(TBQA)得到了广泛的研究。大多数现有的方法侧重于在一段话内找到问题的答案。然而,许多有难度的问题需要来自两个或多个文档的分散文本的支持证据。本文提出了动态融合图网络(Dynamically Fused Graph Network ,DFGN),这是一种解决需要多个分散证据和推理的问题的新方法。受人类逐步推理行为的启发,DFGN包含一个动态融合层,从给定查询中提到的实体开始,沿着文本动态构建的实体图进行探索,并逐步从给定文档中找到相关的支持实体。我们在需要multi-hop reasoning的公共TBQA数据集HotpotQA上评估了DFGN。DFGN在公共数据集上取得了有竞争力的成绩。此外,我们的分析表明,DFGN可以产生可解释的推理链。

网址: https://arxiv.org/abs/1905.06933

5、 Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media(利用图卷积网络对Social Information进行编码,用于新闻媒体中的政治倾向性检测)

ACL ’19

作者:Chang Li, Dan Goldwasser

摘要:确定新闻事件在媒体中讨论方式的政治视角是一项重要而富有挑战性的任务。在这篇文章中,我们强调了将社交网络置于情景化的重要性,捕捉这些信息如何在社交网络中传播。我们使用最近提出的一种表示关系信息的神经网络结构——图卷积网络(Graph Convolutional Network)来捕获这些信息,并证明即使在很少的social information分类中也可以得到显著改进。

网址: https://www.cs.purdue.edu/homes/dgoldwas//downloads/papers/LiG_acl_2019.pdf

6、Graph Neural Networks with Generated Parameters for Relation Extraction(用于关系抽取的具有生成参数的图神经网络)

ACL ’19

作者:Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-seng Chua, Maosong Sun

摘要:近年来,在改进机器学习领域的关系推理方面取得了一些进展。在现有的模型中,图神经网络(GNNs)是最有效的multi-hop关系推理方法之一。事实上,在关系抽取等自然语言处理任务中,multi-hop关系推理是必不可少的。本文提出了一种基于自然语言语句生成图神经网络(GP-GNNs)参数的方法,使神经网络能够对非结构化文本输入进行关系推理。我们验证了从文本中提取关系的GPGNN。 实验结果表明,与baseline相比,我们的模型取得了显著的改进。我们还进行了定性分析,证明我们的模型可以通过multi-hop关系推理发现更精确的关系。

网址: https://arxiv.org/abs/1902.00756

7、Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks(使用图卷积网络在词嵌入中结合句法和语义信息)

ACL ’19

作者:Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar

摘要:词嵌入已被广泛应用于多种NLP应用程序中。现有的词嵌入方法大多利用词的sequential context来学习词的嵌入。虽然有一些尝试利用词的syntactic context,但这种方法会导致词表数的爆炸。在本文中,我们通过提出SynGCN来解决这个问题,SynGCN是一种灵活的基于图卷积的学习词嵌入的方法。SynGCN在不增加词表大小的情况下利用单词的dependency context。SynGCN学习的词嵌入在各种内部和外部任务上都优于现有方法,在与ELMo一起使用时提供优势。我们还提出了SemGCN,这是一个有效的框架,用于整合不同的语义知识,以进一步增强所学习的单词表示。我们提供了两个模型的源代码,以鼓励可重复的研究。

网址: https://arxiv.org/abs/1809.04283

代码链接: http://github.com/malllabiisc/WordGCN

8、 GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction(GraphRel: 将文本建模为关系图,用于实体和关系抽取)

ACL ’19

作者:Tsu-Jui Fu, Peng-Hsuan Li, Wei-Yun Ma

摘要:本文提出了一种利用图卷积网络(GCNs)联合学习命名实体和关系的端到端关系抽取模型GraphRel。与之前的baseline相比,我们通过关系加权GCN来考虑命名实体和关系之间的交互,从而更好地提取关系。线性结构和依赖结构都用于提取文本的序列特征和区域特征,并利用完整的词图进一步提取文本所有词对之间的隐式特征。基于图的方法大大提高了对重叠关系的预测能力。我们在两个公共数据集NYT和webnlg上评估了GraphRel。结果表明,GraphRel在大幅度提高recall的同时,保持了较高的precision。GraphRel的性能也比之前的工作好3.2%和5.8% (F1 score),实现了关系抽取的最先进的方法。

网址: https://tsujuifu.github.io/projs/acl19_graph-rel.html

代码链接: https://github.com/tsujuifu/pytorch_graph-rel

9、Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs(通过对异构图进行推理,实现跨多个文档的Multi-hop阅读理解)

ACL ’19

作者:Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, Bowen Zhou

摘要:跨文档的Multi-hop阅读理解(RC)对单文本RC提出了新的挑战,因为它需要对多个文档进行推理才能得到最终答案。在本文中,我们提出了一个新的模型来解决multi-hop RC问题。我们引入了具有不同类型的节点和边的异构图,称为异构文档-实体(HDE)图。HDE图的优点是它包含不同粒度级别的信息,包括特定文档上下文中的候选信息、文档和实体。我们提出的模型可以对HDE图进行推理,节点表示由基于co-attention 和 self-attention的上下文编码器初始化。我们使用基于图神经网络(GNN)的消息传递算法,在提出的HDE图上累积evidence。通过对Qangaroo WIKIHOP数据集的blind测试集的评估,我们的基于HDE图的单模型给出了具有竞争力的结果,并且集成模型达到了最先进的性能。

网址: https://arxiv.org/abs/1905.07374

10、Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension(多模态上下文图理解和自监督开放集理解的Textbook问答)

ACL ’19

作者:Daesik Kim, Seonhoon Kim, Nojun Kwak

摘要:在本文中,我们介绍了一种解决教科书问答(TQA)任务的新算法。在分析TQA数据集时,我们主要关注两个相关问题。首先,解决TQA问题需要理解复杂输入数据中的多模态上下文。为了解决从长文本中提取知识特征并与视觉特征相结合的问题,我们从文本和图像中建立了上下文图,并提出了一种基于图卷积网络(GCN)的f-GCN模块。其次,科学术语不会分散在各个章节中,而且主题在TQA数据集中是分开的。为了克服这个所谓的“领域外”问题,在学习QA问题之前,我们引入了一种新的没有任何标注的自监督开放集学习过程。实验结果表明,我们的模型明显优于现有的最先进的方法。此外,消融研究证实,将f-GCN用于从多模态上下文中提取知识的方法和我们新提出的自监督学习过程对于TQA问题都是有效的。

网址: https://arxiv.org/abs/1811.00232

下载链接:https://pan.baidu.com/s/1xDKxGyvF4pGa7_8ipuS0bw 提取码:rr1c

成为VIP会员查看完整内容
0
61

1、MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing(MixHop: 通过稀疏邻域混合实现的高阶图卷积结构)

作者:Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan

摘要:现有的基于图神经网络的半监督学习方法(如图卷积网络)不能学习一般的邻域混合关系。为了解决这个缺点,我们提出了一个新的模型,MixHop,它可以通过在不同距离重复混合邻居的特征表示来学习这些关系,包括不同的操作符。MixHop不需要额外的内存或计算复杂度,并且在一些具有挑战性的baseline上性能更好。此外,我们建议使用稀疏正则化,使我们能够可视化网络如何跨不同的图数据集对邻居信息进行优先级排序。我们对所学体系结构的分析表明,每个数据集的邻域混合是不同的。

网址:http://proceedings.mlr.press/v97/abu-el-haija19a.html

代码链接: https://github.com/samihaija/mixhop

2、Compositional Fairness Constraints for Graph Embeddings(图嵌入的组合公平性约束)

作者:Avishek Bose, William Hamilton

摘要:学习高质量的节点嵌入是基于图数据(如社交网络和推荐系统)的机器学习模型的关键步骤。然而,现有的图嵌入技术无法处理公平约束,例如,确保所学习的表示与某些属性(如年龄或性别)不相关。在这里,我们引入一个对抗框架来对图嵌入实施公平性约束。我们的方法是组合的,这意味着它可以灵活地适应推理过程中公平约束的不同组合。例如,在社会推荐的上下文中,我们的框架允许一个用户要求他们的推荐对他们的年龄和性别都是不变的,同时也允许另一个用户只对他们的年龄要求不变。在标准知识图和推荐系统基准测试上的实验突出了我们提出的框架的实用性。

网址:http://proceedings.mlr.press/v97/bose19a.html

代码链接: https://github.com/joeybose/Flexible-Fairness-Constraints

3、Learning Discrete Structures for Graph Neural Networks(学习图神经网络的离散结构)

作者:Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He

摘要:图神经网络(GNNs)是一种流行的机器学习模型,已成功地应用于一系列问题。它们的主要优势在于能够显式地合并数据点之间的稀疏和离散依赖结构。不幸的是,只有在这种图结构可用时才能使用GNN。然而,在实践中,真实世界中的图常常是嘈杂的、不完整的,或者根本就不可用。在此基础上,我们提出通过近似求解一个学习图边缘离散概率分布的双层程序来共同学习图卷积网络(GCNs)的图结构和参数。这不仅允许在给定图不完整或损坏的场景中应用GCNs,还允许在图不可用的场景中应用GCNs。我们进行了一系列的实验,分析了该方法的行为,并证明了它比相关的方法有显著的优势。

网址:http://proceedings.mlr.press/v97/franceschi19a.html

代码链接: https://github.com/lucfra/LDS

4、Graph U-Nets

作者:Hongyang Gao, Shuiwang Ji

摘要:我们研究了图数据的表示学习问题。卷积神经网络可以很自然地对图像进行操作,但在处理图数据方面存在很大的挑战。由于图像是二维网格上节点图的特殊情况,图的嵌入任务与图像的分割等像素级预测任务具有天然的对应关系。虽然像U-Nets这样的编解码器结构已经成功地应用于许多图像的像素级预测任务,但是类似的方法在图数据上还是很缺乏。这是由于池化操作和上采样操作对图数据不是自然的。为了解决这些挑战,我们提出了新的图池化(gPool)和反池化(gUnpool)操作。gPool层根据节点在可训练投影向量上的标量投影值,自适应地选择节点,形成较小的图。我们进一步提出了gUnpool层作为gPool层的逆操作。gUnpool层使用在相应gPool层中选择的节点位置信息将图恢复到其原始结构。基于我们提出的gPool和gUnpool层,我们开发了一个基于图的编解码器模型,称为Graph U-Nets。我们在节点分类和图分类任务上的实验结果表明,我们的方法比以前的模型具有更好的性能。

网址:http://proceedings.mlr.press/v97/gao19a.html

代码链接: https://github.com/HongyangGao/gunet

5、Graph Neural Network for Music Score Data and Modeling Expressive Piano Performance(图神经网络用于乐谱数据和钢琴演奏表现力的建模)

作者:Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Juhan Nam

摘要:乐谱通常被处理为一维序列数据。与文本文档中的单词不同,乐谱中的音符可以由复调性质同时演奏,并且每个音符都有自己的持续时间。在本文中,我们使用图神经网络表示乐谱的独特形式,并将其应用于从乐谱中渲染表现力的钢琴演奏。具体地,我们设计了使用note-level门控图神经网络和采用迭代反馈方法的双向LSTM测量级层次注意网络的模型。此外,为了对给定输入分数的不同性能风格建模,我们使用了一个变分自编码器。听力测试结果表明,与baseline模型和层次注意网络模型相比,我们提出的模型生成了更多的类人性能,而层次注意网络模型将音乐得分处理为类词序列。

网址:http://proceedings.mlr.press/v97/jeong19a.html

代码链接: https://github.com/jdasam/virtuosoNet

6、Graph Matching Networks for Learning the Similarity of Graph Structured Objects(用于学习图结构物体相似性的图匹配网络)

作者:Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, Pushmeet Kohli

摘要:本文针对图结构物体的检索与匹配这一具有挑战性的问题,做了两个关键的贡献。首先,我们演示了如何训练图神经网络(GNN)在向量空间中嵌入图,从而实现高效的相似性推理。其次,提出了一种新的图匹配网络模型,该模型以一对图作为输入,通过一种新的基于注意力的交叉图匹配机制,对图对进行联合推理,计算出图对之间的相似度评分。我们证明了我们的模型在不同领域的有效性,包括具有挑战性的基于控制流图的功能相似性搜索问题,该问题在软件系统漏洞检测中发挥着重要作用。实验分析表明,我们的模型不仅能够在相似性学习的背景下利用结构,而且它们还比那些为这些问题精心手工设计的领域特定baseline系统表现得更好。

网址:http://proceedings.mlr.press/v97/li19d.html

7、Disentangled Graph Convolutional Networks(Disentangled图卷积网络)

作者:Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu

摘要:真实世界图形的形成通常来自于许多潜在因素之间高度复杂的交互作用。现有的基于图结构数据的深度学习方法忽略了潜在因素的纠缠,使得学习表示不鲁棒,难以解释。然而,在图神经网络的研究中,如何将潜在因素分解出来的学习表示方法面临着巨大的挑战,并且在很大程度上还没有得到探索。本文引入解纠缠(Disentangled)图卷积网络(DisenGCN)来学习disentangled节点表示。特别地,我们提出了一种新的邻域路由机制,它能够动态地识别可能导致节点与其相邻节点之间产生边的潜在因素,并相应地将相邻节点分配到一个提取和卷积特定于该因素的特性的信道。从理论上证明了该路由机制的收敛性。实验结果表明,我们提出的模型可以获得显著的性能提升,特别是当数据表明存在许多纠缠因素时。

网址:http://proceedings.mlr.press/v97/ma19a.html

8、GMNN: Graph Markov Neural Networks(GMNN: 图马尔可夫神经网络)

作者:Meng Qu, Yoshua Bengio, Jian Tang

摘要:本文研究关系数据中的半监督对象分类问题,这是关系数据建模中的一个基本问题。在统计关系学习(如关系马尔可夫网络)和图神经网络(如图卷积网络)的文献中,这一问题得到了广泛的研究。统计关系学习方法可以通过条件随机场对对象标签的依赖关系进行有效的建模,用于集体分类,而图神经网络则通过端到端训练学习有效的对象表示来分类。在本文中,我们提出了一种集两种方法优点于一体的Graph Markov Neural Networks (GMNN)。GMNN利用条件随机场对目标标签的联合分布进行建模,利用变分EM算法对其进行有效训练。在E-step中,一个图神经网络学习有效的对象表示,逼近对象标签的后验分布。在M-step中,利用另一个图神经网络对局部标签依赖关系进行建模。在对象分类、链路分类和无监督节点表示学习等方面的实验表明,GMNN取得了较好的效果。

网址:http://proceedings.mlr.press/v97/qu19a.html

代码链接: https://github.com/DeepGraphLearning/GMNN

9、Simplifying Graph Convolutional Networks(简化图卷积网络)

作者:Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, Kilian Weinberger

摘要:图卷积网络(GCNs)及其变体得到了广泛的关注,已成为学习图表示的实际方法。GCNs的灵感主要来自最近的深度学习方法,因此可能会继承不必要的复杂性和冗余计算。在本文中,我们通过连续消除非线性和折叠连续层之间的权重矩阵来减少这种额外的复杂性。我们从理论上分析了得到的线性模型,结果表明它对应于一个固定的低通滤波器,然后是一个线性分类器。值得注意的是,我们的实验评估表明,这些简化不会对许多下游应用程序的准确性产生负面影响。此外,生成的模型可以扩展到更大的数据集,这是自然可解释的,并且比FastGCN的速度提高了两个数量级。

网址:http://proceedings.mlr.press/v97/wu19e.html

代码链接: https://github.com/Tiiiger/SGC

10、Position-aware Graph Neural Networks(位置感知图神经网络)

作者:Jiaxuan You, Rex Ying, Jure Leskovec

摘要:学习节点嵌入,捕捉节点在更广泛的图结构中的位置,对于图上的许多预测任务是至关重要的。然而,现有的图神经网络(GNN)结构在获取给定节点相对于图中所有其他节点的position/location方面的能力有限。本文提出了一种计算位置感知节点嵌入的新型神经网络—Position-aware Graph Neural Networks (P-GNNs)。P-GNN首先对锚节点集进行采样,计算给定目标节点到每个锚集的距离,然后学习锚集上的非线性距离加权聚集方案。通过这种方式,P-GNNs可以捕获节点相对于锚节点的位置。P-GNN有几个优点: 它们具有归纳性,可扩展性,并且可以包含节点特征信息。我们将P-GNNs应用于多个预测任务,包括链路预测和社区检测。我们显示,P-GNNs始终优于最先进的GNNs, 在ROC AUC分数方面提高了66%。

网址:http://proceedings.mlr.press/v97/you19b.html

代码链接: https://github.com/JiaxuanYou/P-GNN

论文下载

百度云链接:https://pan.baidu.com/s/1hOSkrDD2VWRJCTj9_uGrjw

提取码:vcc3

成为VIP会员查看完整内容
0
53

1、Graph Convolutional Networks using Heat Kernel for Semi-supervised Learning

作者:Bingbing Xu , Huawei Shen , Qi Cao , Keting Cen and Xueqi Cheng;

摘要:图卷积网络在图结构数据的半监督学习中取得了显著的成功。基于图的半监督学习的关键是捕捉由图结构施加于节点上的标签或特征的平滑性。以往的方法,包括spectral方法和spatial方法,都致力于将图卷积定义为相邻节点上的加权平均,然后学习图卷积核,利用平滑度来提高基于图的半监督学习的性能。一个开放的挑战是如何确定合适的邻域来反映图结构中表现出来的平滑相关信息。在本文中,我们提出了GraphHeat,利用heat kernel来增强低频滤波器,并在图上的信号变化中增强平滑性。GraphHeat利用热扩散下目标节点的局部结构灵活地确定其相邻节点,而不受先前方法所受的顺序约束。GraphHeat在三个基准数据集(Cora、Citeseer和Pubmed)上实现了基于图的半监督分类,并取得了最先进的结果。

网址:https://www.ijcai.org/proceedings/2019/0267.pdf

2、Graph WaveNet for Deep Spatial-Temporal Graph Modeling

作者:Zonghan Wu , Shirui Pan , Guodong Long, Jing Jiang, Chengqi Zhang;

摘要:时空图(Spatial-temporal graph)建模是分析系统中各组成部分的空间关系和时间趋势的一项重要工作。假设实体之间的底层关系是预先确定的,现有的方法主要捕获固定图结构上的空间依赖关系。但是,显式图形结构(关系)不一定反映真实的依赖关系,并且由于数据中的不完整连接可能会丢失真正的关系。此外,现有的方法无法捕捉时间趋势,因为这些方法中使用的RNNs或CNNs不能捕捉long-range的时间序列。为了克服这些局限性,本文提出了一种新的图神经网络结构—Graph WaveNet,用于时空图的建模。通过开发一种新的自适应依赖矩阵,并通过节点嵌入学习,该模型可以精确地捕捉数据中隐藏的空间依赖关系。利用stacked dilated一维卷积分量,其接收域随着层数的增加呈指数增长,Graph WaveNet能够处理非常长的序列。这两个组件无缝集成在一个统一的框架中,整个框架以端到端方式学习。在METR-LA和PEMS-BAY这两个公共交通网络数据集上的实验结果表明,该算法具有优越的性能。

网址:https://www.ijcai.org/proceedings/2019/0264.pdf

3、Hierarchical Graph Convolutional Networks for Semi-supervised Node Classification

作者:Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang and Tieniu Tan;

摘要:图卷积网络(GCNs)已成功地应用于网络挖掘的节点分类任务中。然而,这些基于邻域聚合的模型大多比较浅显,缺乏“graph pooling”机制,无法获得足够的全局信息。为了增加感受野,我们提出了一种新的深度层次图卷积网络(H-GCN)用于半监督节点分类。H-GCN首先重复地将结构相似的节点聚合到超节点,然后将粗糙的图细化为原始图,以恢复每个节点的表示形式。该粗糙化方法不只是简单地聚合一个或两个hop的邻域信息,而是扩展了每个节点的接受域,从而获得更多的全局信息。提出的H-GCN模型在各种公共基准图数据集上表现出较强的经验性能,性能优于目前最先进的方法,在精度方面获得了高达5.9%的性能提升。此外,当只提供少量带标签的样本时,我们的模型得到了实质性的改进。

网址:https://www.zhuanzhi.ai/paper/3c03b5cfd45607aef03a199c5770f85a

4、AddGraph: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN

作者:Li Zheng, Zhenpeng Li, Jian Li, Zhao Li and Jun Gao;

摘要:动态图中的异常检测在许多不同的应用场景中都是非常关键的,例如推荐系统,但由于异常的高灵活性和缺乏足够的标记数据,也带来了巨大的挑战。在学习异常模式时,最好考虑所有可能的提示,包括结构、内容和时间特征,而不是对部分特征使用启发式规则。在本文中,我们提出了AddGraph,一个使用extended temporal GCN(Graph Convolutional Network,图卷积网络)和注意力模型的端到端异常边缘检测框架,它可以同时捕获动态图中的长期模式和短期模式。为了解决显式标注数据不足的问题,我们采用了选择性负采样和边际损失的方法,对AddGraph进行半监督训练。我们在实际数据集上进行了大量的实验,并证明了AddGraph在异常检测方面可以明显优于最先进的方法。

网址:https://www.ijcai.org/proceedings/2019/0614.pdf

5、Dual Self-Paced Graph Convolutional Network: Towards Reducing Attribute Distortions Induced by Topology

作者:Liang Yang, Zhiyang Chen, Junhua Gu and Yuanfang Guo;

摘要:基于图卷积神经网络(GCNNs)的半监督节点分类的成功,归功于其拓扑上的特征平滑(传播)。然而,利用拓扑信息可能会干扰特征。这种失真将导致节点的一定量的错误分类,这可以仅用特征正确地预测。通过分析边缘在特征传播中的影响,连接具有相似特征的两个节点的简单边缘应该在训练过程中优先于根据curriculum learning的复杂边缘。为了在充分挖掘属性信息潜力的同时减少拓扑结构引起的失真,我们提出了Dual Self-Paced图卷积网络(DSP-GCN)。具体来说,在节点级self-paced learning中,将具有可信预测标签的无标签节点逐步添加到训练集中,而在边缘级self-paced learning中,在训练过程中,将边缘从简单的边缘逐渐添加到复杂的边缘到图中。这两种学习策略通过对边缘和无标签节点的选择进行耦合,实现了相互增强。在多个实际网络上进行了transductive半监督节点分类的实验结果表明,我们提出的DSP-GCN在仅使用一个图卷积层的情况下,成功地减少了拓扑引起的特征失真,同时具有较好的性能。

网址:https://www.ijcai.org/proceedings/2019/0564.pdf

6、Masked Graph Convolutional Network

作者:Liang Yang, Fan Wu, Yingkui Wang, Junhua Gu and Yuanfang Guo;

摘要:半监督分类是机器学习领域中处理结构化和非结构化数据的一项基本技术。传统的基于特征图的半监督分类方法在通常由数据特征构造的图上传播标签,而图卷积神经网络在真实图拓扑上平滑节点属性,即传播特征。本文从传播的角度对其进行了解释,并将其分为基于对称传播和基于非对称传播的方法。从传播的角度看,传统的方法和基于网络的方法都是在图上传播特定的对象。然而,与标签传播不同的是,直觉上“连接的数据样本在特征方面趋于相似”,在特征传播中仅部分有效。因此,提出了一种masked图卷积网络(Masked GCN),它只是根据一个masking indicator将一部分特征传播给邻居,这是通过联合考虑局部邻域中的特征分布和对对分类结果的影响而为每个节点学习的。在传transductive和inductive节点分类任务上的大量实验证明了该方法的优越性。

网址:https://www.ijcai.org/proceedings/2019/0565.pdf

7、Learning Image-Specific Attributes by Hyperbolic Neighborhood Graph Propagation

作者:Xiaofeng Xu, Ivor W. Tsang, Xiaofeng Cao, Ruiheng Zhang and Chuancai Liu;

摘要:特征作为视觉目标描述的一种语义表示,在各种计算机视觉任务中得到了广泛的应用。在现有的基于特征的研究中,通常采用类特定特征(class-specific attributes, CSA),这是类级别的标注,由于其对每个类的标注成本较低,而不是对每个单独的图像进行标注。然而,由于标注错误和单个图像的多样性,class-specific的特征通常是有噪声的。因此,我们希望从原始的class-specific特征中获得特定于图像的特征(image-specific,ISA),即image level标注。在本文中,我们提出了通过基于图的特征传播来学习image-specific的特征。考虑到双曲几何的内在属性,其距离呈指数扩展,构造双曲线邻域图(HNG)来表征样本之间的关系。基于HNG,我们定义了每个样本的邻域一致性,以识别不一致的样本。然后,根据HNG中不一致的样本的邻居对其进行细化。在5个基准数据集上的大量实验表明,在zero-shot目标分类任务中,学习的image-specific的特征明显优于原始的class-specific的特征。

网址:https://www.ijcai.org/proceedings/2019/0554.pdf

成为VIP会员查看完整内容
0
48
小贴士
相关VIP内容
专知会员服务
125+阅读 · 2020年6月30日
专知会员服务
71+阅读 · 2020年1月15日
专知会员服务
55+阅读 · 2020年1月10日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
48+阅读 · 2020年1月10日
八篇NeurIPS 2019【图神经网络(GNN)】相关论文
专知会员服务
35+阅读 · 2020年1月10日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
61+阅读 · 2019年11月3日
相关论文
Filippo Maria Bianchi,Daniele Grattarola,Cesare Alippi
23+阅读 · 2020年6月3日
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Ruochi Zhang,Yuesong Zou,Jian Ma
12+阅读 · 2019年11月6日
Wei-Lin Chiang,Xuanqing Liu,Si Si,Yang Li,Samy Bengio,Cho-Jui Hsieh
9+阅读 · 2019年8月8日
Yue Yu,Jie Chen,Tian Gao,Mo Yu
7+阅读 · 2019年4月22日
Self-Attention Graph Pooling
Junhyun Lee,Inyeop Lee,Jaewoo Kang
4+阅读 · 2019年4月17日
Generative Graph Convolutional Network for Growing Graphs
Da Xu,Chuanwei Ruan,Kamiya Motwani,Evren Korpeoglu,Sushant Kumar,Kannan Achan
3+阅读 · 2019年3月6日
Learning Graph Embedding with Adversarial Training Methods
Shirui Pan,Ruiqi Hu,Sai-fu Fung,Guodong Long,Jing Jiang,Chengqi Zhang
3+阅读 · 2019年1月4日
HyperGCN: Hypergraph Convolutional Networks for Semi-Supervised Classification
Naganand Yadati,Madhav Nimishakavi,Prateek Yadav,Anand Louis,Partha Talukdar
11+阅读 · 2018年9月7日
Zhou Yin,Wei-Shi Zheng,Ancong Wu,Hong-Xing Yu,Hai Wang,Jianhuang Lai
7+阅读 · 2018年2月6日
Ruoyu Li,Sheng Wang,Feiyun Zhu,Junzhou Huang
5+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员