Restless and collapsing bandits are commonly used to model constrained resource allocation in settings featuring arms with action-dependent transition probabilities, such as the allocation of health interventions among patients [Whittle, 1988; Mate et al., 2020]. However, state-of-the-art Whittle-index-based approaches to this planning problem either do not consider fairness among arms or incentivize fairness without guaranteeing it [Mate et al., 2021]. Additionally, their optimality guarantees only apply when arms are indexable and threshold-optimal. We demonstrate that the incorporation of hard fairness constraints necessitates the coupling of arms, which undermines the tractability, and by extension, indexability of the problem. We then introduce ProbFair, a probabilistically fair stationary policy that maximizes total expected reward and satisfies the budget constraint, while ensuring a strictly positive lower bound on the probability of being pulled at each timestep. We evaluate our algorithm on a real-world application, where interventions support continuous positive airway pressure (CPAP) therapy adherence among obstructive sleep apnea (OSA) patients, as well as on a broader class of synthetic transition matrices.
翻译:土匪们通常在武器环境依赖行动的过渡可能性,例如病人之间分配保健干预措施[Wittle,1988年;Mate等人,2020年],用不固定和崩溃的土匪们来模拟在武器环境中的有限资源分配,例如病人之间分配保健干预措施[Wittle,1988年;Mattele等人,2020年],然而,对这一规划问题采取的最新、基于惠特勒指数的办法,要么不考虑武器之间的公平,要么鼓励公平,而不保证公平,[Matte 等人,2021];此外,只有在武器可以指数化和门槛最佳时,才适用它们的最佳保障。我们证明,要结合强硬的公平限制,就需要将武器组合起来,从而破坏问题的可移动性,进而扩大问题的可指数性。我们随后采用了ProbFair,即一种概率公平的稳妥政策,最大限度地实现预期总报酬并满足预算限制,同时确保在每一时间步调调时,其可能性的绝对正下下调。我们用在现实世界应用中评估我们的算法,在其中,干预措施支持阻塞睡眠的病人之间的持续积极空气压力(CPAP)疗法的坚持治疗,作为更广泛的合成过渡矩阵。