Let $H$ be a fixed graph. The $H$-Transversal problem, given a graph $G$, asks to remove the smallest number of vertices from $G$ so that $G$ does not contain $H$ as a subgraph. While a simple $|V(H)|$-approximation algorithm exists and is believed to be tight for every $2$-vertex-connected $H$, the best hardness of approximation for any tree was $\Omega(\log |V(H)|)$-inapproximability when $H$ is a star. In this paper, we identify a natural parameter $\Delta$ for every tree $T$ and show that $T$-Transversal is NP-hard to approximate within a factor $(\Delta - 1 -\varepsilon)$ for an arbitrarily small constant $\varepsilon > 0$. As a corollary, we prove that there exists a tree $T$ such that $T$-Transversal is NP-hard to approximate within a factor $\Omega(|V(T)|)$, exponentially improving the best known hardness of approximation for tree transversals.
翻译:$H 是一个固定的图表 。 美元- 横向问题, 给出了一个图形 $G$, 要求从$G$中去除最小数量的脊椎, 以使$G$不包含$H美元作为子图。 虽然简单的 $V(H) $ $- $- occolcolation 算法存在, 据信每2美元顶端连通的$H 美元就非常紧, 但任何树的近似最硬性是$Omega( log ) ⁇ V(H) $- $- 美元, 当$H是恒星时, 要求从G$ 中去除最小数量的脊椎。 在本文中, 我们为每棵树确定一个自然参数 $\ Delta$ 美元, 并显示$T- Transversal 很难在任意的小系数$( delta - 1 -\ varepslon) 范围内, 美元常态 美元 > 0$。 作为必然, 我们证明, 有一棵树 $T$T- transversalal- hard to most realness as mess as mess as mess rizelestern.