We introduce \textit{HALO} -- a deep generative model utilising HAmiltonian Latent Operators to reliably disentangle content and motion information in image sequences. The \textit{content} represents summary statistics of a sequence, and \textit{motion} is a dynamic process that determines how information is expressed in any part of the sequence. By modelling the dynamics as a Hamiltonian motion, important desiderata are ensured: (1) the motion is reversible, (2) the symplectic, volume-preserving structure in phase space means paths are continuous and are not divergent in the latent space. Consequently, the nearness of sequence frames is realised by the nearness of their coordinates in the phase space, which proves valuable for disentanglement and long-term sequence generation. The sequence space is generally comprised of different types of dynamical motions. To ensure long-term separability and allow controlled generation, we associate every motion with a unique Hamiltonian that acts in its respective subspace. We demonstrate the utility of \textit{HALO} by swapping the motion of a pair of sequences, controlled generation, and image rotations.
翻译:我们引入了\ textit{ hALO} -- -- 一种利用Hamiltonian Lentant操作员可靠解脱图像序列内容和运动信息的深层次基因模型。\ textit{ content} 代表一个序列的简要统计, 和\ textit{ motion} 是一个动态过程, 确定信息如何在序列的任何部分表达。 通过将动态模拟作为汉密尔顿运动, 重要的分层确保:(1) 运动是可逆的, (2) 相位空间路径上的静态、 量保留结构是连续的, 在潜在空间中没有差异。 因此, 序列框架的近距离是通过其在相位空间的坐标而实现的, 这证明对扰动和长期序列生成很有价值。 序列空间通常由不同种类的动态动作组成。 为确保长期的可分离性和允许受控制的生成, 我们将每部运动与一个独特的汉密尔顿运动联系起来, 在其各自的子空间中进行动作。 我们通过对一组序列、 受控的一代和图像的旋转和图像进行转换, 来显示\ textit{HALO} 的效用。