The edit distance is a metric of dissimilarity between strings, widely applied in computational biology, speech recognition, and machine learning. Let $e_k(n)$ denote the average edit distance between random, independent strings of $n$ characters from an alphabet of size $k$. For $k \geq 2$, it is an open problem how to efficiently compute the exact value of $\alpha_{k}(n) = e_k(n)/n$ as well as of $\alpha_{k} = \lim_{n \to \infty} \alpha_{k}(n)$, a limit known to exist. This paper shows that $\alpha_k(n)-Q(n) \leq \alpha_k \leq \alpha_k(n)$, for a specific $Q(n)=\Theta(\sqrt{\log n / n})$, a result which implies that $\alpha_k$ is computable. The exact computation of $\alpha_k(n)$ is explored, leading to an algorithm running in time $T=\mathcal{O}(n^2k\min(3^n,k^n))$, a complexity that makes it of limited practical use. An analysis of statistical estimates is proposed, based on McDiarmid's inequality, showing how $\alpha_k(n)$ can be evaluated with good accuracy, high confidence level, and reasonable computation time, for values of $n$ say up to a quarter million. Correspondingly, 99.9\% confidence intervals of width approximately $10^{-2}$ are obtained for $\alpha_k$. Combinatorial arguments on edit scripts are exploited to analytically characterize an efficiently computable lower bound $\beta_k^*$ to $\alpha_k$, such that $ \lim_{k \to \infty} \beta_k^*=1$. In general, $\beta_k^* \leq \alpha_k \leq 1-1/k$; for $k$ greater than a few dozens, computing $\beta_k^*$ is much faster than generating good statistical estimates with confidence intervals of width $1-1/k-\beta_k^*$. The techniques developed in the paper yield improvements on most previously published numerical values as well as results for alphabet sizes and string lengths not reported before.


翻译:在计算生物学、语音识别和机器学习中广泛应用的字符间距差异度;让 $_k(n) 表示从一个大小的字母中随机独立的字符间距为$n美元。 对于 $k\geq 2, 如何有效计算 $\ k(n) = e_k(n) /n) 和 $\ k(h) 和 $(h) - 2美元 和 美元 的计算方法不同。让 美元 =2 (n) 表示 美元 = 美元 = 美元 = 美元 =k(k) 和 美元 = = 美元 = = 美元 = 美元 = 美元 = (h) = 美元 = = 美元 = 美元 =k) = 美元 = = 美元 = 美元 = = 美元 = = = 美元 = = 美元 = = 美元 = = = = = = 美元 = = = = = = 正在计算 = 美元 = = = = = = = = = = = = = = 美元 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月11日
Arxiv
0+阅读 · 2023年1月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员