Image retargeting aims at altering an image size while preserving important content and minimizing noticeable distortions. However, previous image retargeting methods create outputs that suffer from artifacts and distortions. Besides, most previous works attempt to retarget the background and foreground of the input image simultaneously. Simultaneous resizing of the foreground and background causes changes in the aspect ratios of the objects. The change in the aspect ratio is specifically not desirable for human objects. We propose a retargeting method that overcomes these problems. The proposed approach consists of the following steps. Firstly, an inpainting method uses the input image and the binary mask of foreground objects to produce a background image without any foreground objects. Secondly, the seam carving method resizes the background image to the target size. Then, a super-resolution method increases the input image quality, and we then extract the foreground objects. Finally, the retargeted background and the extracted super-resolued objects are fed into a particle swarm optimization algorithm (PSO). The PSO algorithm uses aesthetic quality assessment as its objective function to identify the best location and size for the objects to be placed in the background. We used image quality assessment and aesthetic quality assessment measures to show our superior results compared to popular image retargeting techniques.
翻译:图像重新定位的目的是在保存重要内容的同时改变图像大小,并尽量减少可见的扭曲。 但是, 以前的图像重新定位方法会生成受文物和扭曲影响的输出。 此外, 大多数先前的工作都试图同时重新定位输入图像的背景和前景。 同时对前景和背景进行重新定位, 使对象的侧面比例发生变化。 侧面比例的变化对于人类对象来说特别不可取。 我们建议了一种克服这些问题的重新定位方法。 提议的方法包括以下步骤。 首先, 油漆方法使用输入图像和浅地对象的二进制遮罩来生成背景图像, 而不使用任何浅地对象。 其次, 接线刻刻方法将背景图像的大小调整到目标大小。 然后, 超分辨率方法会提高输入图像质量的质量, 然后我们提取前方对象。 最后, 重新目标背景和提取的超级解析对象被反馈到粒子的蒸汽优化算法( PSO) 。 PSO 算法使用美学质量评估作为其客观功能, 以便确定最佳位置和图像质量评估结果, 我们用来对图像进行更高级评估。