In the Wishart model for sparse PCA we are given $n$ samples $Y_1,\ldots, Y_n$ drawn independently from a $d$-dimensional Gaussian distribution $N({0, Id + \beta vv^\top})$, where $\beta > 0$ and $v\in \mathbb{R}^d$ is a $k$-sparse unit vector, and we wish to recover $v$ (up to sign). We show that if $n \ge \Omega(d)$, then for every $t \ll k$ there exists an algorithm running in time $n\cdot d^{O(t)}$ that solves this problem as long as \[ \beta \gtrsim \frac{k}{\sqrt{nt}}\sqrt{\ln({2 + td/k^2})}\,. \] Prior to this work, the best polynomial time algorithm in the regime $k\approx \sqrt{d}$, called \emph{Covariance Thresholding} (proposed in [KNV15a] and analyzed in [DM14]), required $\beta \gtrsim \frac{k}{\sqrt{n}}\sqrt{\ln({2 + d/k^2})}$. For large enough constant $t$ our algorithm runs in polynomial time and has better guarantees than Covariance Thresholding. Previously known algorithms with such guarantees required quasi-polynomial time $d^{O(\log d)}$. In addition, we show that our techniques work with sparse PCA with adversarial perturbations studied in [dKNS20]. This model generalizes not only sparse PCA, but also other problems studied in prior works, including the sparse planted vector problem. As a consequence, we provide polynomial time algorithms for the sparse planted vector problem that have better guarantees than the state of the art in some regimes. Our approach also works with the Wigner model for sparse PCA. Moreover, we show that it is possible to combine our techniques with recent results on sparse PCA with symmetric heavy-tailed noise [dNNS22]. In particular, in the regime $k \approx \sqrt{d}$ we get the first polynomial time algorithm that works with symmetric heavy-tailed noise, while the algorithm from [dNNS22]. requires quasi-polynomial time in these settings.


翻译:在稀有的五氯苯的希望模式中, 我们得到的是美元样本 $Y_ 1,\ldot, Y_n$, 独立于美元维度的高斯分配 $({{0, Id +\beta vv ⁇ top})$, $Beta > 0美元和$v\ in\ mathbb{R ⁇ d$ 是美元, 并且我们希望回收 $v$ (上签名) 。 我们显示, 如果 $\ge\ Omega (d) 美元, 那么对于每美元维度的美元来说, 美元维度的O_ndro 分配 $(美元, Idd +beta) 美元分配 美元分配 美元分配 美元分配 美元, 以[\ beta\ tk\ sqrt{r\\\\\ sqrqral] 方式解决了这个问题, 也以( 20d/kxxxxxx 时间) 。 在这项工作之前, 以 美元保理( 美元保理 美元制度中, 也以美元比 美元马氏 更多的时间( 显示需要。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月10日
Arxiv
0+阅读 · 2023年4月7日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员